
Physics Department,
Technical University of Denmark
2800 Kongens Lyngby, Denmark

Component Manual for the Xray-Tracing
Package McXtrace,

version 3.6

E. B. Knudsen, A. Prodi, J. Baltser, P. Willendrup,
A. Vickery, E. Farhi, K. Lefmann, S. Schmidt

January, 2026

The software package McXtrace is a tool for carrying out highly complex Monte Carlo
ray-tracing simulations of X-ray beamlines to high precision. The simulations can com-
pute all aspects of the performance of instruments and can thus be used to optimize
the use of existing equipment, design new instrumentation, and carry out virtual exper-
iments for e.g. training, experimental planning or data analysis. McXtrace is based is
based on a unique design, inhereted from its sister McStas, where an automatic compi-
lation process translates high-level textual instrument descriptions into efficient ANSI-C
code. This design makes it simple to set up typical simulations and also gives essentially
unlimited freedom to handle more unusual cases. This report constitutes the compo-
nent manual for McXtrace, and, together with the manual for the McXtrace system,
it contains full documentation of all aspects of the program. It covers a description of
all official components of the McXtrace package with some theoretical background. Se-
lected test instruments and representative McXtrace simulations performed with these
instruments are described in the User Manual.

This report documents the components for McXtrace version 3.6, released January, 2026.

The authors are:

Erik Bergbäck Knudsen
Physics Department, Techical Univerisity of Denmark, Kgs. Lyngby, Den-
mark
email: erkn@fysik.dtu.dk

Andrea Prodi
Niels Bohr Institute, University of Copenhagen, Denmark
European Synchrotron Radiation Facility, Grenoble, France
email: aprodi@nbi.ku.dk

Peter Kjær Willendrup
Physics Department, Techical Univerisity of Denmark, Kgs. Lyngby, Den-
mark
email: pkwi@fysik.dtu.dk

Kim Lefmann
Niels Bohr Institute, University of Copenhagen, Denmark
email: lefmann@fys.ku.dk

Emmanuel Farhi
Synchrotron SOLEIL, Saint-Aubin, France
email: emmanuel.farhi@synchrotron-soleil.fr

Contents

Preface and acknowledgements 8

1. About the component library 9
1.1. Authorship . 9

1.2. Symbols for x-ray scattering and simulation 9

1.3. Component coordinate system . 10

1.4. About data files . 10

1.5. Component source code . 11

1.6. Documentation . 11

1.7. Disclaimer, bugs . 11

2. Monte Carlo Techniques and simulation strategy 12
2.1. X-ray simulations . 12

2.1.1. Monte Carlo ray tracing simulations 13

2.2. The x-ray weight . 13

2.2.1. Statistical errors of non-integer counts 14

2.3. Weight factor transformations during a Monte Carlo choice 15

2.3.1. Direction focusing . 15

2.4. Stratified sampling . 16

2.5. Accuracy of Monte Carlo simulations . 17

3. Source components 18
3.0.1. Photon flux and Brilliance . 18

3.1. Source pt: A mathematical point emitting photons with a spectrum either
uniform, gaussian or generated from a datafile 20

3.2. Source flat: A flat surface emitting photons with a spectrum either uni-
form, gaussian or generated from a datafile 20

3.3. Source div: A continuous source with specified divergence 21

3.4. Source gaussian: the model has a gaussian distribution of intensity 21

3.5. Source lab: X-ray tube laboratory source 22

3.6. Other sources components: virtual sources (event files) 25

4. Beam optical components: Arms, slits, filters etc. 26
4.1. Arm: The generic component . 26

4.2. Slit: A beam defining diaphragm . 26

4.3. Slit N: multiple slits . 27

4.4. Beamstop: A photon absorbing area . 27

5

4.5. Filter: A general absorption filter model 28

4.5.1. Example . 28

4.6. Chopper simple: An ideal chopper . 29

5. Refractive optical components: lenses 30
5.1. Lens simple: Thin lens approximation . 30

5.2. Lens parab: Thick parabolic CRL . 30

5.3. Lens parab Cyl: Thick 1D-parabolic CRL 30

5.4. Lens parab rough: Thick parabolic CRL including roughness-model . . . 31

5.5. Lens parab Cyl rough: Thick 1D-parabolic CRL including roughness-model 31

5.6. Lens Kinoform: refractice kinoform lens 31

5.7. Lens elliptical: . 32

6. Reflective optical components: mirrors 33
6.1. Mirror curved: Cylindrically curved mirror 33

6.2. Mirror parabolic: Mirror with a parabolic curvature profile. 33

6.3. Mirror elliptic: Mirror with a elliptic curvature profile. 33

6.4. Multilayer elliptic: Elliptically curved mirror coated with a multilayer . . 34

6.4.1. Definition of the reference frames 34

6.4.2. Algorithm . 35

6.5. Reflection of the ray in the mirror . 36

6.5.1. Mirror reflectivity . 36

6.6. TwinKB ML: Side-by-side Kirkpatrick-Baez mirror pair 36

7. Samples 38
7.0.1. Scattering notation . 38

7.0.2. Weight transformation in samples; focusing 39

7.0.3. Future development of sample components 40

7.1. Absorption sample: An absorption phantom 40

7.2. Saxs spheres: A model of dilute hard spheres in solution for SAXS-use . . 41

7.3. PowderN: A general powder sample . 42

7.3.1. Files formats: powder structures 42

7.3.2. Geometry, physical properties, concentricity 43

7.3.3. Powder scattering . 43

7.3.4. Algorithm . 46

7.4. Perfect crystal: A Darwin-width domniated single crystal model 47

7.5. Single crystal: The single crystal component 48

7.6. Molecule 2state: Excitable time-dependent sample model 49

8. Monitors and detectors 50
8.1. Monitor: Simple intensity monitor . 51

8.2. E monitor: The energy-sensitive monitor 51

8.3. L monitor: The wavelength sensitive monitor 51

8.4. PSD monitor: The PSD monitor . 51

6

8.5. PSD monitor coh: The coherent PSD monitor 52
8.6. PSD monitor 4PI: A 4 PI steradian spherical monitor. 52
8.7. EPSD monitor: Energy-selective PSD monitor 52
8.8. W psd monitor: A power vs. position monitor 53
8.9. Monitor nD: A general Monitor for 0D/1D/2D records 54

8.9.1. The Monitor nD geometry . 54
8.9.2. The photon parameters that can be monitored 55
8.9.3. Important options . 56
8.9.4. The output files . 56
8.9.5. Monitor equivalences . 57
8.9.6. Usage examples . 57
8.9.7. Monitoring user variables . 58

8.10. PreMonitor nD: Store photon rays for possible later detection. 60

9. Special-purpose components 62
9.1. Progress bar: Dynamic information output 63
9.2. Virtual output: Saving the first part of a split simulation 63
9.3. Virtual input: Starting the second part of a split simulation 63
9.4. Shadow input: Reading input from Shadow 64
9.5. Shadow output: Saving the photon rays for use with SHADOW 64

A. Libraries and conversion constants 65
A.1. Run-time calls and functions (mcxtrace-r) 65

A.1.1. Photon propagation . 65
A.1.2. Coordinate and component variable retrieval 66
A.1.3. Coordinate transformations . 67
A.1.4. Mathematical routines . 68
A.1.5. Output from detectors . 68
A.1.6. Ray-geometry intersections . 69
A.1.7. Random numbers . 69

A.2. Reading a data file into a vector/matrix (Table input, read table-lib) . 70
A.3. Constants for unit conversion etc. 73

B. The McXtrace terminology 75

Bibliography 76

Index and keywords 77

7

Preface and acknowledgements

This document contains information on the x-ray scattering components which are the
building blocks for defining instruments in the Monte Carlo Xray-tracing program McX-
trace version 3.6. The initial release in June 2011 of version 1.0 was presented in
Ref. [LN99]. The reader of this document is not supposed to have specific knowledge
of xray scattering, but some basic understanding of physics is helpful in understanding
the theoretical background for the component functionality. For details about setting
up and running simulations, we refer to the McXtrace system manual [Knu+14]. We
assume familiarity with the use of the C programming language.

We would like to explicitly thank all the partners in this project:

� The European Synchrotron Radiation Facility (ESRF), Grenoble, France

� SAXSLAB Aps., Lundtofte, Denmark

� Risø DTU, Roskilde, Denmark

� Niels Bohr Institute, Univeristy of Copenhagen, Copenhagen, Denmark.

� Faculty for Life Sciences, University of Copenhagen, Copenhagen, Denmark.

As McXtrace has inherited much of its functionality from its sister McStas we take the
oppurtunity to thank Dir. Kurt N. Clausen, PSI, for his continuous support to McStas
and for having initiated the project. Continuous support to McStas has also come from
Prof. Robert McGreevy, ISIS.
We have further benefited from discussions with many other people in the scattering

community, too numerous to mention here.
The users who contributed components to this manual are acknowledged as authors

of the individual components. We encourage other users to contribute components with
manual entries for inclusion in future versions of McXtrace.
In case of errors, questions, or suggestions, do not hesitate to contact the user/devel-

oper community by writing to the user mailiing list mcxtrace-users@mcxtrace.órg or
consult the McXtrace home page [Mcx]. A special developement website (shared with
the sister project McStas) complete with bug/request reporting service is available [Tra].
We would like to kindly thank all McXtrace component contributors. This is the way

we improve the software alltogether.
If you appreciate this software, please subscribe to the mcxtrace-users@mcxtrace.org

email list, send us a smiley message, and contribute to the package.
We also encourage you to refer to this software when publishing results, with the

following citation:

� E. B. Knudsen, et.al, J. Applied Cryst. 46, pp 679, 2013.

8

1. About the component library

This McXtrace Component Manual consists of the following major parts:

� An introduction to the use of Monte Carlo methods in McXtrace.

� A thorough description of system components, with one chapter per major cate-
gory: Sources, optics, monochromators, samples, monitors, and other components.

� The McXtrace library functions and definitions that aid in the writing of simula-
tions and components in Appendix A.

� An explanation of the McXtrace terminology in Appendix B.

Additionally, you may refer to the list of example instruments from the library in the
McXtrace User Manual.

1.1. Authorship

The component library is maintained by the McXtrace system group. A number of
basic components “belongs” the McXtrace system, and are supported and tested by the
McXtrace team.

Other components are contributed by specific authors, who are listed in the code
for each component they contribute as well as in this manual. McXtrace users are
encouraged to send their contributions to us for inclusion in future releases.

1.2. Symbols for x-ray scattering and simulation

In the description of the theory behind the component functionality we will use the usual
symbols r for the position (x, y, z) of the particle (unit m), and k for the particle wave

vector (kx, ky, kz) (unit Å
−1

). The wavelength is the reciprocal wave vector, λ = 2π/k.
By convention energy is usually given i keV and may be calculated from the wavelength
by: λ = 12.398

E

In general, vectors are denoted by boldface symbols.

Subscripts ”i” and ”f” denotes “initial” and “final”, respectively, and are used in
connection with the photon state before and after an interaction with the component in
question.

9

MCXTRACE/data Description

*.lau Laue pattern file, as issued from Crystallographica. For
use with Single crystal and PowderN. Data: [h k l Mult.
d-space 2Theta F-squared]

*.laz Powder pattern file, as obtained from Lazy/ICSD. For
use with PowderN.

*.txt General text file, containing ascii data. Currently used
for elemental data extracted from NIST[Nis].

Table 1.1.: Data files of the McXtrace library.

1.3. Component coordinate system

All mentioning of component geometry refer to the local coordinate system of the in-
dividual component. The axis convention is so that the z axis is along the photon
propagation axis, the y axis is vertical up, and the x axis points left when looking along
the z-axis, completing a right-handed coordinate system. Most components ’position’
(as specified in the instrument description with the AT keyword) corresponds to their
volume centre. The mirrors are an important counterexmaple. In this case the ’position’
is the centre of the mirror surface

Components are not necessarily designed to overlap. This may lead to loss of rays.
Warnings will be issued during simulation if sections of the instrument are not reached
by any xrays, or if a significant number of xrays are removed. This is usually the sign
of either overlapping components or low intensity.

1.4. About data files

Some components require external data files, e.g. lattice crystallographic definitions for
Laue and powder pattern diffraction, absorption and reflectivity files, etc.

Such files distributed with McXtrace are located in the data sub-directory of the
MCXTRACE library. Components that make use of the McXtrace file system, including the
read-table library (see section A.2) may access all McXtrace data files without making
local copies. Of course, you are welcome to define your own data files, and eventually
contribute to McXtrace if you find them useful.

File extensions are not interpreted by McXtrace but help in identifying relevant files
per application. Table 1.1 lists the current default file extensions.

McXtrace itself generates both simulation and monitor data files, the structure of
which is explained in the User Manual (see end of chapter ’Running McXtrace’).

10

1.5. Component source code

Source code for all components may be found in the MCXTRACE library subdirectory of the
McXtrace installation; the default is /usr/local/lib/mcxtrace/ on Unix-like systems
and C:\mcxtrace\lib on Windows systems, but it may be changed using the MCXTRACE
environment variable.
In case users only require to add new features, preserving the existing features of a

component, using the EXTEND keyword in the instrument description file is recommended.
For larger modification of a component, it is advised to make a copy of the component
file into the working directory. A component file in the local directory will in McXtrace
takes precedence over a library component of the same name.

1.6. Documentation

As a complement to this Component Manual, we encourage users to use the mxdoc

front-end which enables to display both the catalog of the McXtrace library, e.g using:

mxdoc

as well as the documentation of specific components, e.g with:

mxdoc --text name
mxdoc file.comp

The first line will search for all components matching the name, and display their help
section as text. For instance, mxdoc .laz will list all available Lazy data files, whereas
mxdoc --text Monitor will list most Monitors. The second example will display the
help corresponding to the file.comp component, using your BROWSER setting, or as
text if unset. The --help option will display the command help, as usual.
An overview of the component library is also given at the McXtrace home page [Mcx]

and in the User Manual [Knu+14].

1.7. Disclaimer, bugs

We would like to emphasize that the usage of both the McXtrace software, as well
as its components are the responsability of the users. Indeed, obtaining accurate and
reliable results requires a substantial work when writing instrument descriptions. This
also means that users should read carefully both the documentation from the manuals
[Knu+14] and from the component itself (using mcdoc comp) before reporting errors.
Most anomalous results often originate from a wrong usage of some part of the package.
Anyway, if you find that either the documentation is not clear, or the behavior of the

simulation is undoubtedly anomalous, you should report this to us at mcxtrace-users@mcxtrace.org
and/or refer to our special bug/request reporting service [Mcz].

11

2. Monte Carlo Techniques and simulation
strategy

This chapter explains the simulation strategy and the Monte Carlo techniques used in
McXtrace. We first explain the concept of the x-ray weight factor, and discuss the
statistical errors in dealing with sums of x-ray weights. Secondly, we give an expression
for how the weight factor transforms under a Monte Carlo choice and specialize this to the
concept of direction focusing. Finally, we present a way of generating random numbers
with arbitrary distributions. More details are available in the Appendix concerning
random numbers in the User manual.

2.1. X-ray simulations

X-ray scattering beamlines are built as a series of optical elements. Each of these el-
ements modifies the beam characteristics (e.g. divergence, wavelength spread, spatial
and temporal distributions) in a way which, for simple x-ray beam configurations, may
be modelled with analytical methods.

However, real x-ray beamlines consist of a large number of optical elements, and this
brings additional complexity by introducing strong correlations between x-ray beam
parameters like divergence and position - which is the basis of the acceptance diagram
method - but also wavelength and time. The usual analytical methods, such as phase-
space theory, then reach their limit of validity in the description of the resulting effects.

In order to cope with this difficulty, Monte Carlo (MC) methods (for a general review,
see Ref. [Jam80]) may be applied to the simulation of x-ray beamlines. The use of prob-
ability is commonplace in the description of microscopic physical processes. Integrating
these events (absorption, scattering, reflection, ...) over the x-ray trajectories results
in an estimation of measurable quantities characterizing the beamline. Moreover, using
variance reduction (importance sampling) where possible, reduces the computation time
and gives better accuracy.

Implementations of the MC method for X-ray beamlines already exist, most notable
is probably SHADOW [WCC94], originally developed by the late Franco Cerrina and
coworkers, now developed further by M. Sanchez Del Rio at the ESRF[Rio+11][Sha].
Other implementations of the same concept are RAY [Sch08] from BESSY andXtrace[Bau+07].
hosted at ANKA

12

2.1.1. Monte Carlo ray tracing simulations

Mathematically, the Monte-Carlo method is an application of the law of large numbers
[Jam80; GRR92]. Let f(u) be a finite continuous integrable function of parameter u
for which an integral estimate is desirable. The discrete statistical mean value of f
(computed as a series) in the uniformly sampled interval a < u < b converges to the
mathematical mean value of f over the same interval.

lim
n→∞

1

n

n∑
i=1,a≤ui≤b

f(ui) =
1

b− a

∫ b

a
f(u)du (2.1)

In the case were the ui values are regularly sampled, we come to the well known
midpoint integration rule. In the case were the ui values are randomly (but uniformly)
sampled, this is the Monte-Carlo integration technique. As random generators are not
perfect, we rather talk about quasi -Monte-Carlo technique. We encourage the reader to
refer to James [Jam80] for a detailed review on the Monte-Carlo method.

2.2. The x-ray weight

A totally realistic semi-classical simulation will require that each x-ray is at any time
either present or lost. On many beamlines the sheer abundance of x-ray photons makes
it impractical to trace each and every photon from the source. This is particularly the
case at XFELs. Additionally, only a very small fraction of the initial x-rays will ever
be detected, and simulations of this kind will therefore waste much time in dealing with
x-rays that never hit the detector.
A way of dealing with these issues and speed up calculations is to introduce a x-ray

”weight factor” for each simulated ray and to adjust this weight according to the path of
the ray. If e.g. the reflectivity of a certain optical component is 10%, and only reflected
x-rays ray are considered later in the simulations, the x-ray weight will be multiplied by
0.10 when passing this component, but every x-ray is allowed to reflect in the component.
In contrast, the totally realistic simulation of the component would require on average
ten incoming x-rays for each reflected one.

Let the initial x-ray weight be p0 and let us denote the weight multiplication factor in
the j’th component by πj . The resulting weight factor for the x-ray ray after passage of
the whole beamline becomes the product of all contributions

p = pn = p0

n∏
j=1

πj . (2.2)

Each adjustement factor should be 0 < πj < 1, except in special circumstances, so that
total flux can only decrease through the simulation. For convenience, the value of p is
updated (within each component) during the simulation.
Simulation by weight adjustment is performed whenever possible. This includes

� Transmission through filters and windows.

13

� Reflection from monochromator (and analyser) crystals with finite reflectivity and
mosaicity.

� Reflections from mirrors.

� Passage of a continuous beam through a chopper.

� Scattering from all types of samples.

2.2.1. Statistical errors of non-integer counts

In a typical simulation, the result will consist of a count of x-ray histories (”rays”) with
different weights. The sum of these weights is an estimate of the mean number of x-rays
hitting the monitor (or detector) per second in a “real” experiment. One may write the
counting result as

I =
∑
i

pi = Np, (2.3)

where N is the number of rays hitting the detector and the horizontal bar denotes
averaging. By performing the weight transformations, the (statistical) mean value of
I is unchanged. However, N will in general be enhanced, and this will improve the
accuracy of the simulation.
To give an estimate of the statistical error, we proceed as follows: Let us first for

simplicity assume that all the counted x-ray weights are almost equal, pi ≈ p, and
that we observe a large number of x-rays, N ≥ 10. Then N almost follows a normal
distribution with the uncertainty σ(N) =

√
N 1. Hence, the statistical uncertainty of

the observed intensity becomes

σ(I) =
√
Np = I/

√
N, (2.4)

as is used in real x-ray experiments (where p ≡ 1). For a better approximation we
return to Eq. (2.3). Allowing variations in both N and p, we calculate the variance of
the resulting intensity, assuming that the two variables are independent:

σ2(I) = σ2(N)p2 +N2σ2(p). (2.5)

Assuming as before that N follows a normal distribution, we reach σ2(N)p2 = Np2.
Further, assuming that the individual weights, pi, follow a Gaussian distribution (which
in some cases is far from the truth) we have N2σ2(p) = σ2(

∑
i pi) = Nσ2(pi) and reach

σ2(I) = N
(
p2 + σ2(pi)

)
. (2.6)

The statistical variance of the pi’s is estimated by σ2(pi) ≈ (
∑

i p
2
i −Np2)/(N − 1). The

resulting variance then reads

σ2(I) =
N

N − 1

(∑
i

p2i − p2

)
. (2.7)

1This is not correct in a situation where the detector counts a large fraction of the x-rays in the
simulation, but we will neglect that for now.

14

For almost any positive value of N , this is very well approximated by the simple expres-
sion

σ2(I) ≈
∑
i

p2i . (2.8)

As a consistency check, we note that for all pi equal, this reduces to eq. (2.4)

In order to compute the intensities and uncertainties, the detector components in
McXtrace will keep track of N =

∑
i p

0
i , I =

∑
i p

1
i , and M2 =

∑
i p

2
i .

2.3. Weight factor transformations during a Monte Carlo
choice

When a Monte Carlo choice must be performed, e.g. when the initial energy and direction
of the x-ray ray is decided at the source, it is important to adjust the x-ray weight so
that the combined effect of x-ray weight change and Monte Carlo probability of making
this particular choice equals the actual physical properties we like to model.

Let us follow up on the simple example of transmission. The probability of trans-
mitting the real x-ray is P , but we make the Monte Carlo choice of transmitting the
x-ray every time: fMC = 1. This must be reflected on the choice of weight multiplier πj
given by the master equation In the “real” semi-classical world, there is a distribution
(probability density) for the x-rays in the six dimensional (energy, direction, position)
space of Π(E,Ω, r) = dP/(dEdΩd3r) depending upon the source type and its param-
eters (such as gap, period, field strength etc. for an undulator). In the Monte Carlo
simulations, the six coordinates are for efficiency reasons in general picked from another
distribution: fMC(E,Ω, r) ̸= Π(E,Ω, r), since one would e.g. often generate only x-rays
within a certain parameter interval. However, we must then require that the weights are
adjusted by a factor πj (in this case: j = 1) so that

fMCπj = P. (2.9)

This probability rule is general, and holds also if, e.g., it is decided to transmit only
half of the rays (fMC = 0.5). An important different example is elastic scattering from a
powder sample, where the Monte-Carlo choices are the particular powder line to scatter
from, the scattering position within the sample and the final x-ray direction within the
Debye-Scherrer cone.

2.3.1. Direction focusing

An important application of weight transformation is direction focusing. Assume that
the sample scatters the x-rays in many directions. In general, only x-rays in some of
these directions will stand any chance of being detected. These directions we call the
interesting directions. The idea in focusing is to avoid wasting computation time on
x-rays scattered in the other directions. This trick is an instance of what in Monte Carlo
terminology is known as importance sampling.

15

If e.g. a sample scatters isotropically over the whole 4π solid angle, and all interesting
directions are known to be contained within a certain solid angle interval ∆Ω, only these
solid angles are used for the Monte Carlo choice of scattering direction. According to
Eq. (2.9), the weight factor will then have to be changed by the amount πj = |∆Ω|/(4π).
One thus ensures that the mean simulated intensity is unchanged during a ”correct”
direction focusing, while a too narrow focusing will result in a lower (i.e. wrong) intensity,
since we cut x-rays rays that should have reached the final detector.

Figure 2.1.: Illustration of the effect of direction focusing in McXtrace. Weights of x-rays
emitted into a certain solid angle are scaled down by the full unit sphere
area.

2.4. Stratified sampling

One particular efficiency improvement technique is the so-called stratified sampling. It
consists in partitioning the event distributions in representative sub-spaces, which are
then all sampled individualy. The advantage is that we are then sure that each sub-space
is well represented in the final integrals. This means that instead of shooting N events,
we define D partitions and shoot r = N/D events in each partition. We may define
partitions so that they represent ’interesting’ distributions, e.g. from events scattered
on a monochromator or a sample. The sum of partitions should equal the total space
integrated by the Monte Carlo method, and each partition must be sampled randomly.
In the case of McXtrace, the stratified sampling is used when repeating events, i.e.

when using the SPLIT keyword in the TRACE section on beamline descriptions. We
emphasize here that the number of repetitions r should not exceed the dimensionality
of the Monte Carlo integration space (which is d = 10 for x-ray events) and the dimen-

16

Records Accurarcy

103 10 %
104 2.5 %
105 1 %
106 0.25 %
107 0.05 %

Table 2.1.: Accuracy estimate as a function of the number of statistical events used to
estimate an integral with McXtrace.

sionality of the partition spaces, i.e. the number of random generators following the
stratified sampling location in the beamline.

2.5. Accuracy of Monte Carlo simulations

When running a Monte Carlo, the meaningful quantities are obtained by integrating
random events into a single value (e.g. flux), or onto an histogram grid. The theory
[Jam80] shows that the accuracy of these estimates is a function of the space dimension
d and the number of events N . For large numbers N , the central limit theorem provides
an estimate of the relative error as 1/

√
N . However, the exact expression depends on

the random distributions.
McXtrace uses a space with d = 12 parameters to describe x-rays (position, wavevec-

tor, weight, polarisation, phase, time). We show in Table 2.1 a rough estimate of the
accuracy on integrals as a function of the number of records reaching the integration
point. This stands both for integrated flux, as well as for histogram bins - for which the
number of events per bin should be used for N .

17

3. Source components

McXtrace contains a number of different source components, and any simulation will
usually contain exactly one of these sources. The main function of a source is to de-
termine a set of initial parameters (r,k, t) for each photon ray. This is done by Monte
Carlo choices from suitable distributions. For example, in most present sources the ini-
tial position is found from a uniform distribution over the source surface. The initial
photon wavenumber is selected within an interval of either the corresponding energy or
the corresponding wavelength.
For pulsed sources, the choice of the emission time, t, is being made on basis of detailed

analytical expressions. For other sources, t is set to zero. In the case one would like to
use a steady state source with time-of-flight settings, the emission time of each photon
ray should be determined using a Monte Carlo choice. This may be achieved by the
EXTEND keyword in the instrument description source as in the example below:

TRACE

COMPONENT MySource=Source_pt(...) AT (...)

EXTEND

%{

t = 1e-3*randpm1(); /* set time to +/- 1 ms */

%}

Also take a look at the Chopper simple component.

3.0.1. Photon flux and Brilliance

The flux of the sources deserves special attention. The total intensity is defined as the
sum of weights of all emitted x-rays during one simulation (the unit of total photon
weight is thus photons per second). The flux, ψ, at an instrument is defined as intensity
per area perpendicular to the beam direction.
The source Brilliance, Φ, is defined in different units (See e.g. [ANM11]): the number

of photon rays emitted per second from a 1m2m area on the source surface, with direction
within a 1 m2rad angle window, and with wavelength within a 1% interval. The total
intensity of real photons emitted towards a given diaphragm (units: ph./s) is therefore
(for constant Φ):

Itotal = ΦA∆Ω∆λ, (3.1)

where A is the source area, ∆Ω is the solid angle of the diaphragm as seen from the
source surface, and ∆λ is the width of the wavelength interval in which photons are
emitted (assuming a uniform wavelength spectrum).

18

0
1

2
3

−0.05 0 0.050.1

−0.05

0

0.05

0.1

x/[m]

sources

z/[m]

y
/[

m
]

Figure 3.1.: A circular source component (at z=0) emitting photon rays randomly, either
from a model, or from a data file.

The simulations are performed so that detector intensities are independent of the
number of photon histories simulated (although more photon histories will give better
statistics). If Nsim denotes the number of x-ray histories to simulate, the initial photon
weight p0 must be set to

p0 =
Ntotal

Nsim
=

Φ(λ)

Nsim
AΩ∆λ, (3.2)

where the source brilliance is now given a λ-dependence.
As a start, we recommend new McXtrace users to use the Source flat component.

For a slightly more realistic sources are supply Source flat with a spectrum file (for
instance generated by SPECTRA [TK01]) or Source gaussian.

Optimizers can dramatically improve the statistics, but may occasionally give wrong
results, due to misleaded optimization. You should always check such simulations with
(shorter) non-optimized ones.
Other ways to speed-up simulations are to read events from a file. See section 3.6 for

details.

19

3.1. Source pt: A mathematical point emitting photons with a
spectrum either uniform, gaussian or generated from a
datafile

Input Parameters for component Source_pt from sources

1 <Parameter = value >, [Unit] , De s c r ip t i on

The simplest source model, where a mathematical point source at (0, 0, 0) emits pho-
tons. The wavevector of the emitted photons is picked randomly in a defining aperture
focus xw by focus yh m at (0, 0, dist). Please note that this aperture is merely a virtual
aperture used to reduce the sampling space. This has a few implications: Other compo-
nents may be placed without reference to the aperture, but if the aperture does not fill
the full acceptance window of subsequent components your simulations will be biased.
The aperture is simply there to provide efficient sampling.
If a spectrum file is not supplied, the xray is given a weight which is the total wavelength-

integrated intensity downscaled by the solid angle subtended by the defining aperture.
The Energy/wavelength spectrum of the emitted photons is centered around E0 or λ0
with a width of dE or dλ respectively. E0 takes precedence over λ0. Thus if E0 ̸= 0
the the combination E0, dE is used, λ0, dλ otherwise. If gauss (the default) is set to be
non-zero the spectrum is Gaussian with mean E0 (λ0) and standard deviation dE (dλ),
otherwise the spectrum is uniform in E0±dE (λ0± dλ).

If a spectrum file is supplied, a slightly different strategy is adopted. In this case
the wavelength/energy range implied by the datafile is sampled unformly and each ray
is assigned a weight corresponding to the intensity indicated by linear interpolation
between datapoints at that wavelength. This implies an oversampling of weak parts of
the intensity spectrum.

Currently only completely coherent or fully incoherent beams are supported. If ran-
domphase is specified emitted photons will be assigned a random phase, otherwise it is
set to the value of phase.

3.2. Source flat: A flat surface emitting photons with a
spectrum either uniform, gaussian or generated from a
datafile

Input Parameters for component Source_flat from sources

1 <Parameter = value >, [Unit] , De s c r ip t i on

A simple source model, with a flat surface emitting photons. The surface in the xy-
plane is specified as a rectangle with dimensions xwidth × yheight m2, or as a circle with
radius m. The initial x-ray position is chosen randomly in the source surface — its
wavevector is chosen randomly (exactly as in the case of Source pt) (section 3.1) in
the defining aperture with height focus yh and width focus xw placed at (0, 0, dist).

20

Just as for Source pt the aperture is for efficiency purposes and, if misused, may
cause biasing.

With the exception of source size related parameters, all other parameters are identical
to Source pt Note that this also applies to coherence and photon phase. If random-
phase= 0 then a photon emitted from (x0, y0, 0) will in phase with a photon emitted
from (x1, y1, 0). I.e. full transversal coherence.

3.3. Source div: A continuous source with specified divergence

Input Parameters for component Source_div from sources

1 <Parameter = value >, [Unit] , De s c r ip t i on

Source div is a rectangular source, w×h, which emits a beam of a specified divergence
around the direction of the z-axis.

Just as for Source pt, if a spectrum file is not supplied, the xray is given a weight
which is the total wavelength-integrated intensity downscaled by the solid angle sub-
tended by the defining aperture and the energy/wavlength spectrum is centered around
E0 or λ0 with width dE or dλ respectively. The profile is Gaussian if gauss ̸= 0, uniform
if gauss= 0, If a spectrum file is supplied, a slightly different strategy is adopted. In this
case the wavelength/energy range implied by the datafile is sampled unformly and each
ray is assigned a weight corresponding to the intensity indicated by linear interpolation
between datapoints at that wavelength. This implies an oversampling of weak parts of
the intensity spectrum.

The beam intensity is uniform over the whole of the source and the source divergences
are focus ah and focus aw in degrees. Unless gauss a ̸== 0 the individual photons are
sampled from a uniform divergence distribution, otherwise a Gaussian is used.

3.4. Source gaussian: the model has a gaussian distribution of
intensity

Input Parameters for component Source_gaussian from sources

1 <Parameter = value >, [Unit] , De s c r ip t i on

A simplified version of a completely incoherent source of horizontal and vertical sizes
sig x and sig y respectively with angular divergence sigPr x and sigPr y. Can be used
to model an undulator source emitting a photon beam that has gaussian distribution.
This naturally generates a larger Gaussian profile at a distance. A sampling window at
(0, 0, dist) may be specified by the parameters focus xw and focus yh, which restricts the
sampling phases space of the emitted photons (See section 3.1 for details).

The energy spectrum emitted by Source gaussian source is completely analogous to
Source pt, as is its photon phase functionality.

21

3.5. Source lab: X-ray tube laboratory source

Input Parameters for component Source_lab from sources

1 <Parameter = value >, [Unit] , De s c r ip t i on

Source lab is a model of a laboratory X-ray tube. An electron ray hits a target of
specified material. Currently, only single material targets are allowed. To model multiple
material targets one could construct a model with two or more sources simultaneously.
This has consequences for intensity of the source which should be downscaled accordingly.

An electron beam of rectangular transverse crossection (width,height) and energy E0
impinges on the target of material. Wrt. the electron beam, the target is considereded
infinitely thick. The beam is considered to have uniform intenisty. Thus, the spatial
distribution of x-ray generation will be exponential in the depth of the material.

Further, an exit aperture is defined with dimensions (focus xw,focus yh). The centre
of the aperture is situated at a distance dist m from where the electron beam hits the
target slab at an elevation of take off (see Figure 3.5).

The Source lab coordinate system has its origin in the center of the elctron beam
at the surface of the anode material and is oriented such that the z-axis points at the
center of the exit window, and the x-axis is parallel to the width of the electron beam.

Note that the exit aperture is merely an opening. If the material absorption of a
window, e.g. Be, is to be taken into account a Filter (section 4.5) should be inserted
after the exit aperture.

For each photon ray to be generated, a Monte Carlo choice is made to generate ei-
ther a Bremsstrahlung photon or one from one of the x-ray emission lines of the mate-
rial. (1 − frac) of the rays are generated from characteristic emission, and (frac) from
Bremsstrahlung. In most cases Bremsstrahlung is unwanted background, which is why
the default is 0.1. Note that this only governs how much of the available statistics is
diverted into simulating Bremsstrahlung. It does not have an impact on what intensity
is detected in subsequent monitors — only on the errorbars of the detected numbers.

The spectral characteristics of the generated Bremsstrahlung is goverened by the model
suggested by Kramer [Kra23]. Although disputed in several subsequent papers, the
model is simple, and sufficiently accurate for many background estimation purposes.

Characteristic emission on the other hand is sampled from a set of Lorentzian functions
with central wavelengths found in the work by [Bea67] with spectral widths taken from
[KO79].

An example of beam spectral characteristics emitted from a Cu-anode target detected
1 mm from an exit aperture of 1 × 1 cm2 10 cm downstream from the target at a
take off angle of 6◦ is seen in figure 3.5.

Source lab includes a set of common anode materials: {Cu, Ga, Mo, Ag, W}. More
materials can be added by the following procedure:

1. Find the atomic number, Z, for the material you want to add. So far only single
materials are supported.

22

e− beam

zx

y
width

height

take off
dist

focus yh

focus xw

O

mu

Figure 3.2.: Geometry of the Source lab component. An electron beam impinges at a
right angle on an anode material, where X-rays are generated. The Origin
is defined to be a the centre of the electron beam on the anode surface, and
the coordinate system is oriented such that the z-axis point towards the exit
aperture.

Figure 3.3.: Intensity vs. wavelenghth for a Cu-anode laboratory source.

23

2. Look up (and note down) the central energies of (up to) 6 characteristic lines for
the material in e.g. [Bea67]. Also note down the number lines you have recorded.

3. Look up the natural spectral widths of those lines in [KO79].

4. Find the relative intensity of the the set of lines. For instance from the x-ray data
booklet.

5. Note down the ionization energy EI(Z), and flourescence yield, Y (Z), of the anode
material.

With this information assemble a code line as:
{Z,EI(Z),Y (Z),n,{[EC]},{[W]},{[I]}},
and put it in the source file Source lab.comp, just above the line that reads
{0,0.0,0.0,0,{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0}}
in the SHARE section of the component source code. Here [EC] refers to a comma sep-
arated list of characteristic energies in keV, [W] a list of characteristic widths in keV,
and [I] a list of relative line intensities. Lastly, n denotes the number of x-ray lines.

24

3.6. Other sources components: virtual sources (event files)

25

4. Beam optical components: Arms, slits,
filters etc.

This chapter contains a number of optical components used to modify the x-ray beam
in various ways, as well as the “generic” component Arm.

4.1. Arm: The generic component

Input Parameters for component Arm from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component Arm is empty; is resembles an optical bench and has no effect on the
x-ray. The purpose of this component is only to provide a standard means of defining a
local coordinate system within the instrument definition. Other components may then
be positioned relative to the Arm component using the McXtrace meta-language. The
use of Arm components in beamline definitions is not required but is recommended for
clarity. Arm has no input parameters.

The first Arm instance in an instrument definition may be changed into aProgress bar
(sec. 9.1) component in order to display simulation progress on the fly, and possibly save
intermediate results.

4.2. Slit: A beam defining diaphragm

Input Parameters for component Slit from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component Slit is a very simple construction. It sets up an opening at z = 0,
and propagates the photon rays onto this plane (by the kernel call PROP Z0). Photons
within the slit opening are unaffected, while all other photons are discarded by the kernel
call ABSORB.

By using Slit, some photons contributing to the background in a real experiment will
be neglected. These are, for instance, the ones that scatter off the inner side of the slit,
penetrate the slit material, or clear the outer edges of the slit.

The opening of the slit is determined by specifying either a radius, a width (xwidth)
and a height (yheight), or absolute limits in x and y (xmin, xmax, ymin, ymax), in order
of precedence. If radius is set, the opening is considered circular.

26

The slit component can also be used to discard insignificant (i.e. very low weight)
rays, that in some simulations may be very abundant and therefore time consuming. If
the optional parameter cut is set, all x-rays with p < cut are ABSORB’ed. This use is
recommended in connection with Virtual output.

Slit may be used to model slit diffraction, thourgh judicious use of the resmapling
parameters: focus xw,focus yh, focus x0, focus y0. The similarity in parameter naming
for sources (chapter 3) is intentional as computationally the processes are the same. If
present the focus parameters cause the ray to be regarded as a Huygens wave and a new
direction going towards the resampling window is computed. The resulting difference
in phase gives rise to maxima and minima as expected. This feature should be used
with care: the further away from the optical axis, the more statistics and finer binning
is needed to get meaningful results. Please refer to [BK+13] for more deatils.

4.3. Slit N: multiple slits

Input Parameters for component Slit_N from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

Documentation pending.

4.4. Beamstop: A photon absorbing area

Input Parameters for component Beamstop from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component Beamstop can be seen as the reverse of the Slit component. It
sets up an area at the z = 0 plane. Photons that hit the plane within this area are
ABSORB’ed, while all others are unaffected.

By using this component, some photons contributing to the background in a real
experiment will be neglected. These are the ones that scatter off the side of the (real)
beamstop, or penetrate the absorbing material. Further, the holder of the beamstop is
not simulated.

Beamstop can be either circular or rectangular. The input parameters of Beamstop
are either height and width (xwidth, yheight) or the four coordinates,(xmin, xmax, ymin,
ymax) defining the opening of a rectangle, or the radius of a circle, depending on which
parameters are specified.

If the ”direct beam” (e.g. after a monochromator or sample) should not be simulated,
it is possible to emulate an ideal beamstop so that only the scattered beam is left;
without the use of Beamstop: This method is useful for instance in the case where
only photons scattered from a sample are of interest. The example below removes the
direct beam and any background signal from other parts of the beamline

27

COMPONENT MySample=PowderN(...) AT (...)

EXTEND

%{

if (!SCATTERED) ABSORB;

%}

4.5. Filter: A general absorption filter model

Input Parameters for component Filter from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

This component is a filter in the shape of a rectangular block or a general shape
defined by a set of polygons. Given an input file containing material parameters. Nec-
cessary parameters are nominal density and a parameterization of the linear attenuation
coefficient, µ as a function of wavelength (or energy).

The model is very simple: Firstly the X-ray is traced to find intersection points be-
tween ray and filter (0 or 2). If no intersection is found the x-ray is left untouched
and nothing further happens. Assuming the ray intersects the filter: Secondly, the path
length dl within the filter is computed. Thirdly a µ = f(λ,material) is computed by in-
terpolating in a datafile, and the x-ray weight is adjusted according to p = p exp(−dl∗µ).
The x-ray is left at the point where it exits the filter block (the 2nd intersection).

Example data files corresponding to all elements up to Z = 92 are distributed with
McXtrace in the MCXTRACE/data directory as *.txt files. These tables have been ex-
tracted from the NIST FFAST [Nis] x-ray database. To generate other datafiles from the
same source a simple shell script: MCXTRACE/data/get_xray_db_data is also distributed
with McXtrace Running this script will connect to the NIST webiste and download a
.html file. This output must now be modified such that html-tags are removed and all
header lines begin with #

4.5.1. Example

This is an example of how to download and generate datafiles for the Filter.comp and
others.

The distributed tables have been extracted from the NIST x-ray database. To ease
generation of more dtafiles from the same source a simple shell script:
MCXTRACE/data/get_xray_db_data

is also distributed with McXtrace

Running this script will connect to the NIST webiste and download a .html file. This
output must now be modified wuch that html-tags are removed and all header lines
begin with #.

/usr/local/lib/mcxtrace/data/get_xray_db_data 3 output.dat

28

where the second parameter (3) is the atom number of the material, for which we want to
generate a datafile. Now open the generated datafile (output.dat) with your favourite
text editor and make sure the file ends up looking like this

#Li (Z 3)

#Atomic weight: A[r] 6.941000

#Nominal density: rho 5.3300E-01

rho[a](barns/atom) = [mu/rho](cm^2 g^-1) x 1.15258E+01

E(eV) [mu/rho](cm^2 g^-1) = f[2](e atom^-1) x 6.06257E+06

2 edges. Edge energies (keV):

#

#

K 5.47500E-02 L I 5.34000E-03

#

#Relativistic correction estimate f[rel] (H82,3/5CL) = -9.8613E-04,

-6.0000E-04 e atom^-1

Nuclear Thomson correction f[NT] = -7.1131E-04 e atom^-1

#

#---

#Form Factors, Attenuation and Scattering Cross-sections

#Z=3, E = 0.001 - 433 keV

#

E f[1] f[2] [mu/rho] [sigma/rho] [mu/rho] [mu/rho][K] lambda

Photoelectric Coh+inc Total

keV e atom^-1 e atom^-1 cm^2 g^-1 cm^2 g^-1 cm^2 g^-1 cm^2 g^-1 nm

5.233200E-03 9.08733E-01 0.0000E+00 0.0000E+00 2.3914E-07 2.3914E-07 0.000E+00 2.369E+02

5.313300E-03 8.59283E-01 0.0000E+00 0.0000E+00 2.5404E-07 2.5404E-07 0.000E+00 2.333E+02

5.334660E-03 8.03599E-01 0.0000E+00 0.0000E+00 2.5813E-07 2.5813E-07 0.000E+00 2.324E+02

5.366700E-03 8.56971E-01 1.0769E-01 1.2165E+05 2.6435E-07 1.2165E+05 0.000E+00 2.310E+02

.

.

.

3.788588E+02 3.00000E+00 3.9121E-08 6.2602E-07 8.4389E-02 8.4390E-02 6.123E-07 3.273E-03

4.050001E+02 3.00000E+00 3.3438E-08 5.0054E-07 8.2127E-02 8.2128E-02 4.895E-07 3.061E-03

4.329451E+02 3.00000E+00 2.8581E-08 4.0022E-07 7.9892E-02 7.9892E-02 3.913E-07 2.864E-03

Please make sure you don’t forget to remove the html-tags in the bottom of the file as
well. In the future we will set up a more streamlined way of doing this.

4.6. Chopper simple: An ideal chopper

Input Parameters for component Chopper_simple from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

Chopper simple is an idelized version of a chopper with a rectangular chopper opening
which may open instantly and has no side-scattering etc.

It models the chopper with a blocking infinitely thin aperture which becomes trans-
parent in the time interval t ∈ [t0 , t0 + τ]. This is an idelized version of a chopper
where the chopper opening is rectangular which may open instantly (if t rise= 0, the
default). For nonzero rise time the aperture simply becomes gradually less opaque for
t ∈ [t0 − t rise, t0].
For correct normalization of intesity a chopper period, T, must also be set.
is first is useful when using Chopper simple with continous sources who inherently

have no time-dependence. Thus the emission time of the photon ray is arbitrary, and
the chopper defines the temporal signature of the beam, i.e. it simply sets the time-
parameter of the photon ray randomly in the opening window of the chopper. Naturally
this should only be used for the first chopper element in a simulation.

29

5. Refractive optical components: lenses

An X-ray refractive lens, often referred to as a Compund Refractive Lens (CRL), is a
fairly new type of device, which has gained popularity in the last few years. An early
study showing the feasiblity of such devices may be found in [SKS96]. As the refractive
index of X-rays is n ≈ 1 a number of lenses, stacked together is usually necessary to
bring the focal length to practical values. McXtrace includes a few lens components,
which all have slightly different charactertics.

5.1. Lens simple: Thin lens approximation

Input Parameters for component Lens_simple from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

This models a thin-lens approximation of a stack of parabolic refractive x-ray lenses

5.2. Lens parab: Thick parabolic CRL

Input Parameters for component Lens_parab from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

Component model of a stack of compund refractive lenses. Each lens in the stack is
modelled by two 2D parabolic surfaces, and rays are traced through all the complete
stack taking the displacement of the surfaces into account. This is naturally less efficient
than a thin lens approximation.

The logic behind the model is the following: a photon interacts with the surface of
the lens at a certain angle Θ, which alters in accordance with Snell’s law upon photon’s
entering the lens’s material. The combination of the refractive process inside material
(that is characterized by a material datafile) and the interaction with a geometrical
surface results in a photon’s new trajectory, i.e. in focusing.
The functionality of Lens parab Cyl, Lens parab rough, and Lens parab Cyl rough

will be merged into this component.

5.3. Lens parab Cyl: Thick 1D-parabolic CRL

Input Parameters for component Lens_parab_Cyl from optics

30

1 <Parameter = value >, [Unit] , De s c r ip t i on

This component is based on the same logical approach as the Lens parab with one
significant difference - geometrical surface. Parabolic cylinder (parabolic curvature along
the vertical axes only, invariant along the horizontal) and thus ofocuses the beam in only
in the vertical direction.

This component and its functionality is scheduled to be merged into Lens parab

5.4. Lens parab rough: Thick parabolic CRL including
roughness-model

Input Parameters for component Lens_parab_rough from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

Identical to Lens parab except it has the option of a roughness parameter. Roughness
is simply modelled by a stochatstic, normally distributed, displacement of the normal
vector of the lens surfaces.

This component and its functionality is scheduled to be merged into Lens parab

5.5. Lens parab Cyl rough: Thick 1D-parabolic CRL including
roughness-model

Input Parameters for component Lens_parab_Cyl_rough from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

Identical to Lens parab Cyl except it has the option of a roughness parameter.
Roughness is simply modelled by a stochatstic, normally distributed, displacement of
the normal vector of the lens surfaces.

This component and its functionality is scheduled to be merged into Lens parab

5.6. Lens Kinoform: refractice kinoform lens

Input Parameters for component Lens_Kinoform from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

Doc. Pend.

31

5.7. Lens elliptical:

Input Parameters for component Lens_elliptical from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

doc. pend.

32

6. Reflective optical components: mirrors

This section describes advanced reflective X-ray optics components such as mirrors.

6.1. Mirror curved: Cylindrically curved mirror

Input Parameters for component Mirror_curved from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

Models a cylindrical mirror, positioned in the XZ-plane curving towards positive X.
The input parameter radius defines the radius of curvature and the mirror size is given by
length and width where length and width is along Z and Y respectively. coating and R0
are mutually exclusive. If R0 is nonzero, it is taken as the reflectivity value, irrespective
of wavelength, whereas coating nominates a file from which to read values for f1 and
f2. See [Nis] for definitions. For elements Z ∈ [1, 92] datafiles are distributed with the
McXtrace system that may be used as: coating="Rh.txt". or coating="Al.txt".

This component is scheduled to be merged with Mirror parabolic and Mirror elliptic

6.2. Mirror parabolic: Mirror with a parabolic curvature profile.

Input Parameters for component Mirror_parabolic from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

This component is scheduled to be merged with Mirror elliptic

6.3. Mirror elliptic: Mirror with a elliptic curvature profile.

Input Parameters for component Mirror_elliptic from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

This component is scheduled to be merged with Mirror parabolic

33

6.4. Multilayer elliptic: Elliptically curved mirror coated with a
multilayer

Input Parameters for component Multilayer_elliptic from optics

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component Multilayer elliptic models a single rectangular reflecting multilayer
mirror plate with elliptical curvature. It can be used as a sample component, to e.g. as-
semble a Kirkpatrick-Baez focusing system or in combination with a double-crystal
monochromator.
Figure 6.1Left shows a side view of a mirror (the blue section of the ellipse) in the

McXtrace coordinate system. At the mirror center, the mirror tangent is parallel to the
z axis and the mirror normal is parallel to the y axis. The width of the mirror is w and
in y − z plane the mirror has the curvature of an ellipse with major axis a and minor
axis b,

z2

a2
+
y2

b2
= 1 , |x| < w

2
. (6.1)

The length of the mirror is L. The coordinates of the mirror center (0, Y0, Z0) and the
ellipse parameters a, b are determined uniquely by the central glancing angle, the source-
mirror distance and the mirror-image distance. The position of the mirror is chosen to
be at the positive side of the y axis.

The input parameters of this component are: theta [◦], the incident angle; s1 [m], the
distance from the source to the multilayer; s2 [m], the focusing distance of the multilayer;
length [m], the length of the mirrors; width [m], the width of the mirror along the x-axis;
R, the reflectivity.

6.4.1. Definition of the reference frames

The direction and position of the incoming photon is defined relative to the coordinate
system illustrated in Fig. 6.1Left (in the code referred to asMcXtrace coordinate system):

� the y-axis is parallel to the central mirror normal

� the z-axis is parallel to the central mirror tangent

� the origin is at the mirror center

However, all the calculations are conducted in another reference frame which is illus-
trated in Fig. 6.1 Right(in the following referred to as the Ellipse coordinate system):

� the z-axis is parallel to major axis of ellipse

� the y-axis is parallel to minor axis of ellipse

� the origin is at the center of the ellipse

� the mirror center at (0, Y0, Z0), uniquely determined by the glancing angle at the
mirror center, the source-mirror distance and mirror-image distance.

34

-1 0 1

 1.5

 0

-1.5
-1 0 1

Y axisY axis

Z
 a

x
is

Z
 a

x
is

SOURCE

SOURCE

N

N

McXtrace

coordinate system

#1
 1.5

 0

-1.5

Ellipse

coordinate system

#2

Figure 6.1.: The same image in different coordinate systems.
Left : McXtrace System with the y-axis is parallel to the central mirror
normal, the z-axis is parallel to the central mirror tangent and the origin is
at the mirror center.
Right : Ellipse System with the z-axis parallel to major axis of ellipse, the
y-axis is parallel to minor axis of ellipse and the origin is at the center of
the ellipse.

6.4.2. Algorithm

1. The photon is generated with a starting point S and a direction Vin defined in the
McXtrace coordinate system.

2. All calculations are performed in the Ellipse coordinate system, so to proceed the
basis is changed to that reference frame.

3. The 2 intersections of the ray with the ellipse are determined.

4. It is checked if any of the intersections are within the area defined by the mirror.

5. If one of the solutions is valid, the reflection of that ray is determined.

6. The coordinates of the starting point and direction of the reflected ray are calcu-
lated using the basis of the McXtrace coordinate system.

35

Vin

Vout

N

-2(N.Vin)N

Figure 6.2.: The reflection of the unit vector Vin in the mirror with the normal unit
vector N is V out = V in − 2(N · V in)N

6.5. Reflection of the ray in the mirror

The tangent and normal to the ellipse z2/a2 + y2/b2 = 1 at the point (Y, Z) are found
by implicit differentiation:

2z

a2
+

2y

b2
dy

dz
= 0 , (6.2)

so at the point (Y,Z) the slope of the tangent is dy
dz = − Z b2

Y a2
. The slope of the normal

is minus the inverse of the tangent slope, so the coordinates of the mirror normal are

Nx = 0 Ny =
a2 Y

b2 Z
Nz = 1 . (6.3)

With Vin and N denoting unit vectors (direction and normal respectively), the direction
of the reflected ray is calculated as

V out = V in − 2(N · V in)N =

 Vinx − 2(N · V in)Nx

Viny − 2(N · V in)Ny

Vinz − 2(N · V in)Nz

 (6.4)

6.5.1. Mirror reflectivity

At present, the Multilayer elliptic Mirror component uses a reflectivity table reflect,
which 1st column is q [Å−1] and from the 2nd column on as the reflectivity R in [0-1] as
function of tabulated energy [keV]. An example file, calculated for a particular Si/W
multilayer, is provided (reflectivity.txt). User provided reflectivity data files can be
parsed by the component.

6.6. TwinKB ML: Side-by-side Kirkpatrick-Baez mirror pair

Input Parameters for component TwinKB_ML from optics

36

1 <Parameter = value >, [Unit] , De s c r ip t i on

Models a pair of perpendicular, elliptically curved mirrors, known as a Montel-mirror
or Side-by-side Kirkpatrick-Baez mirror.

37

7. Samples

This class of components models the sample of the experiment. This is by far the
most challenging part of an xray scattering instrument to model. However, for purpose
of simulating instrument performance, details of the samples are rather unimportant,
allowing for simple approximations. On the contrary, for full virtual experiments it is of
importance to have realistic and detailed sample descriptions. McXtrace contains both
simple and detailed samples.

An important component class is elastic Bragg scattering from an ideal powder. The
component PowderN models a powder scatterer with reflections given in an input file.
The component includes absorption, incoherent scattering, direct beam transmission and
can assume concentric shape, i.e. can be used for modelling sample enviroments.

Next type is Bragg scattering from single crystals. Two types of single crystal exist
in McXtrace at present: The Perfect crystal and Single crystal components. Per-
fect crystal is in fact most often used as a monchromator crystal. It models a crystal
where peak broadening is dominated by the Darwin width. Currently it only handles
a single defined reflection. If more than one is wanted this could be accomplished by
using two instances in a GROUP and dynamically choose between them with a WHEN-
statement. For details on the GROUP and WHEN constructs see the main McXtrace user
manual [Knu+14]

Much more general, the component Single crystal is a single crystal sample (with
multiple scattering) that allows the input of an arbitrary unit cell and a list of struc-
ture factors, read from a LAZY / Crystallographica file. This component also allows
anisotropic mosaicity and ∆d/d lattice space variation.

Isotropic small-angle scattering is simulated in Saxs Spheres, which models scatter-
ing from a collection of hard spheres (dilute colloids). Furthermore, a whole series of
sample components modelling various SAXS standard sample types are available in the
contrib component library section.

7.0.1. Scattering notation

In sample components, we use a notation common for scattering experiments, where the
wave vector transfer is denoted the scattering vector

q ≡ ki − kf . (7.1)

In analygo, the energy transfer is given by

ℏω ≡ Ei − Ef =
ℏ2

2mn

(
k2i − k2f

)
. (7.2)

38

lfulll1

l2
Figure 7.1.: The geometry of a scattering event within a powder sample.

7.0.2. Weight transformation in samples; focusing

Within many samples, the incident beam is attenuated by scattering and absorption, so
that the illumination varies considerably throughout the sample. For single crystals, this
phenomenon is known as secondary extinction [Bac75], but the effect is important for all
samples. In analytical treatments, attenuation is difficult to deal with, and is thus often
ignored, making a thin sample approximation. In Monte Carlo simulations, the beam
attenuation is easily taken care of, as will be shown below. In the description, we ignore
multiple scattering, which is however implemented in some sample components.

The sample has an absorption cross section per unit cell of σac and a scattering cross
section per unit cell of σsc . The x-ray path length in the sample before the scattering event
is denoted by l1, and the path length within the sample after the scattering is denoted
by l2, see figure 7.1. We then define the inverse penetration lengths as µs = σsc/Vc and
µa = σac /Vc, where Vc is the volume of a unit cell. Physically, the attenuation along this
path follows

fatt(l) = exp(−l(µs + µa)), (7.3)

where the normalization fatt(0) = 1.

The probability for a given x-ray to be scattered from within the interval [l1; l1 + dl]
will be

P (l1)dl = µsfatt(l1)dl, (7.4)

while the probability for a x-ray to be scattered from within this interval into the solid
angle Ω and not being scattered further or absorbed on the way out of the sample is

P (l1,Ω)dldΩ = µsfatt(l1)fatt(l2)γ(Ω)dΩdl, (7.5)

39

where γ(Ω) is the directional distribution of the scattered x-rays, and l2 is determined
by Monte Carlo chocies of l1, Ω, and from the sample geometry, see e.g. figure 7.1.
In our Monte-Carlo simulations, we may choose the scattering parameters by making

a Monte-Carlo choice of l1 and Ω from a distribution different from P (l1,Ω). By doing
this, we must adjust πi according to the probability transformation rule (2.9). If we
e.g. choose the scattering depth, l1, from a flat distribution in [0; lfull], and choose the
directional dependence from g(Ω), we have a Monte Carlo probability

f(l1,Ω) = g(Ω)/lfull, (7.6)

lfull is here the path length through the sample as taken by a non-scattered x-ray (al-
though we here assume that all simulated x-rays are being scattered). According to
(2.9), the x-ray weight factor is now adjusted by the amount

πi(l1,Ω) = µslfull exp [−(l1 + l2)(µ
a + µs)]

γ(Ω)

g(Ω)
. (7.7)

In analogy with the source components, it is possible to define ”interesting” directions
for the scattering. One will then try to focus the scattered x-rays, choosing a g(Ω), which
peaks around these directions. To do this, one uses (7.7), where the fraction γ(Ω)/g(Ω)
corrects for the focusing. One must choose a proper distribution so that g(Ω) > 0 in
every interesting direction. If this is not the case, the Monte Carlo simulation gives
incorrect results. All samples have been constructed with a focusing and a non-focusing
option.

7.0.3. Future development of sample components

There is still room for much more development of functionality in McXtrace samples.

7.1. Absorption sample: An absorption phantom

Input Parameters for component Absorption_sample from samples

1 <Parameter = value >, [Unit] , De s c r ip t i on

This component models an absorption phantom with a single inclusion in surrounding
material. It is intended use is for tomographic imaging simulations.

40

7.2. Saxs spheres: A model of dilute hard spheres in solution
for SAXS-use

Input Parameters for component Saxs_spheres from samples

1 <Parameter = value >, [Unit] , De s c r ip t i on

41

7.3. PowderN: A general powder sample

Input Parameters for component PowderN from samples

1 <Parameter = value >, [Unit] , De s c r ip t i on

The powder diffraction component PowderN models a powder sample with back-
ground coming only from incoherent scattering and no multiple scattering. At the users
choice, a given percentage of the incoming events may be transmitted (attenuated) to
model the direct beam. The component can also assume concentric shape, i.e. be used
for describing sample environment (cryostat, sample container etc.).
The description of the powder comes from a file in one of the standard output formats

LAZY, FULLPROF, or CRYSTALLOGRAPHICA.

7.3.1. Files formats: powder structures

Data files of type lau and laz in the McXtrace distribution data directory are self-
documented in their header.

PowderN(<geometry parameters>, filename="Al.laz")

Other column-based file formats may also be imported e.g. with parameters such as:

format=Crystallographica

format=Fullprof

format={1,2,3,4,0,0,0,0}

In the latter case, the indices define order of columns parameters multiplicity, lattice
spacing, F 2, Debye-Waller factor and intrinsic line width.
The column signification may as well explicitely be set in the data file header using

any of the lines:

#column_j <index of the multiplicity ’j’ column>

#column_d <index of the d-spacing ’d’ column>

#column_F2 <index of the squared str. factor ’|F|^2’ column [b]>

#column_F <index of the structure factor norm ’|F|’ column>

#column_DW <index of the Debye-Waller factor ’DW’ column>

#column_Dd <index of the relative line width Delta_d/d ’Dd’ column>

#column_inv2d <index of the 1/2d=sin(theta)/lambda ’inv2d’ column>

#column_q <index of the scattering wavevector ’q’ column>

Other component parameters may as well be specified in the data file header with
lines e.g.:

#V_rho <value of atom number density [at/Angs^3]>

#Vc <value of unit cell volume Vc [Angs^3]>

#sigma_abs <value of Absorption cross section [barns]>

42

#sigma_inc <value of Incoherent cross section [barns]>

#Debye_Waller <value of Debye-Waller factor DW>

#Delta_d/d <value of Delta_d/d width for all lines>

#density <value of material density [g/cm^3]>

#weight <value of material molar weight [g/mol]>

#nb_atoms <value of number of atoms per unit cell>

Further details on file formats are available in the mxdoc page of the component.

7.3.2. Geometry, physical properties, concentricity

The sample has the shape of a solid cylinder, radius r and height h or a box-shaped
sample of size xwidth x yheight x zdepth. At the users choice, an inner ’hollow’ can be
specified using the parameter thickness.
PowderN can assume a concentric shape, i.e. can contain other components inside

the inner hollow. To allow this, two almost identical copies of the PowderN components
must be set up around the internal component(s), for example:

COMPONENT Cryo = PowderN(reflections="Al.laz", radius = 0.01, thickness = 0.001,

concentric = 1)

AT (0,0,0) RELATIVE Somewhere

COMPONENT Sample = some_other_component(with geometry FULLY enclosed in the hollow)

AT (0,0,0) RELATIVE Somewhere

COMPONENT Cryo2 = COPY(Cryo)(concentric = 0)

AT (0,0,0) RELATIVE Somewhere

As outlined, the first instance of PowderN must have concentric = 1 and the second
instance must have concentric = 0. Furthermore, the component(s) inside the hollow
must have a geometry which can be fully contained inside the hollow.
In addition to the coherent scattering specified in the reflections file, absorption-

and incoherent cross sections can be given using the input parameters σac and σsi .
The Bragg scattering from the powder, σsc is calculated from the input file, with the

parameters Q, |F (Q)|2, and j for the scattering vector, structure factor, and multiplicity,
respectively. The volume of the unit cell is denoted V c, while the sample packing factor
is fpack.

Focusing is performed by only scattering into one angular interval, dϕ of the Debye-
Scherrer circle. The center of this interval is located at the point where the Debye-
Scherrer circle intersects the half-plane defined by the initial velocity, vi, and a user-
specified vector, f .

7.3.3. Powder scattering

An ideal powder sample consists of many small crystallites, although each crystallite
is sufficiently large not to cause measurable size broadening. The orientation of the

43

2theta

Figure 7.2.: The scattering geometry of a powder sample showing part of the Debye-
Scherrer cone (solid lines) and the Debye-Scherrer circle (grey).

crystallites is evenly distributed, and there is thus always a large number of crystallites
oriented to fulfill the Bragg condition

nλ = 2d sin θ, (7.8)

where n is the order of the scattering (an integer), λ is the x-ray wavelength, d is the
lattice spacing of the sample, and 2θ is the scattering angle, see figure 7.2. As all
crystal orientations are realised in a powder sample, the x-rays are scattered within a
Debye-Scherrer cone of opening angle 4θ [Bac75].

Equation (7.8) may be cast into the form

|Q| = 2|k| sin θ, (7.9)

where Q is a vector of the reciprocal lattice, and k is the wave vector of the x-ray. It is
seen that only reciprocal vectors fulfilling |Q| < 2|k| contribute to the scattering. For
a complete treatment of the powder sample, one needs to take into account all these
Q-values, since each of them contribute to the attenuation.

The strength of the Bragg reflections is given by their structure factors∣∣∣∣∣∣
∑
j

bj exp(Rj ·Q)

∣∣∣∣∣∣
2

, (7.10)

where the sum runs over all atoms in one unit cell. This structure factor is non-zero
only when Q equals a reciprocal lattice vector.

44

The textbook expression for the scattering cross section corresponding to one Debye-
Scherrer cone reads [Squ78, ch.3.6], with V = NV0 being the total sample volume:

σcone =
V

V 2
0

λ3

4 sin θ

∑
Q

|F (Q)|2. (7.11)

For our purpose, this expression should be changed slightly. Firstly, the sum over struc-
ture factors for a particular Q is replaced by the sum over essentially different reflections
multiplied by their multiplicity, j. Then, a finite packing factor, f , is defined for the
powder, and finally, the Debye-Waller factor is multiplied on the elastic cross section to
take lattice vibrations into account (no inelastic background is simulated, however). We
then reach

σcone,Q = jQf exp(−2W)
V

V 2
0

λ3

4 sin θ
|F (Q)|2 (7.12)

= f exp(−2W)
N

V0

4π3

k2
jQ|F (Q)|2

Q
(7.13)

in the thin sample approximation. For samples of finite thickness, the beam is being
attenuated by the attenuation coefficient

µQ = σcone,Q/V. (7.14)

For calibration it may be useful to consider the total intensity scattered into a detec-
tor of effective height h, covering only one reflection [Squ78, ch.3.6]. A cut though the
Debye-Scherrer cone perpendicular to its axis is a circle. At the distance r from the
sample, the radius of this circle is r sin(2θ). Thus, the detector (in a small angle ap-
proximation) counts a fraction h/(2πr sin(2θ)) of the scattered x-rays, giving a resulting
count intensity:

I = Ψσcone,Q
h

2πr sin(2θ)
, (7.15)

where Ψ is the flux at the sample position.

For clarity we repeat the meaning and unit of the symbols:

Ψ s−1m−2 Incoming intensity of x-rays
I s−1 Detected intensity of x-rays
h m Height of detector
r m Distance from sample to detector
f 1 Packing factor of the powder
j 1 Multiplicity of the reflection
V0 m3 Volume of unit cell

|F (Q)|2 m2 Structure factor
exp(−2W) 1 Debye-Waller factor

µQ m−1 Linear attenuation factor due to scattering from one powder line.

45

A powder sample will in general have several allowed reflections Qj , which will all
contribute to the attenuation. These reflections will have different values of |F (Qj)|2
(and hence of Qj), jj , exp(−2Wj), and θj . The total attenuation through the sample
due to scattering is given by µs = µsinc +

∑
j µ

s
j , where µ

s
inc represents the incoherent

scattering.

7.3.4. Algorithm

The algorithm of PowderN can be summarized as

� Check if the x-ray intersects the sample (otherwise ignore the following).

� Calculate the attenuation coefficients for scattering and absorption.

� Perform Monte Carlo choices to determine the scattering position, scattering type
(coherent/incoherent), and the outgoing direction.

� Perform the necessary weight factor transformation.

46

7.4. Perfect crystal: A Darwin-width domniated single crystal
model

Input Parameters for component Perfect_crystal from samples

1 <Parameter = value >, [Unit] , De s c r ip t i on

Pedning Further Documetation

47

7.5. Single crystal: The single crystal component

Input Parameters for component Single_crystal from samples

1 <Parameter = value >, [Unit] , De s c r ip t i on

Documentation Pending

48

7.6. Molecule 2state: Excitable time-dependent sample model

Input Parameters for component Molecule_2state from samples

1 <Parameter = value >, [Unit] , De s c r ip t i on

Further Documentaion pending

49

8. Monitors and detectors

In real scattering experiments, detectors and monitors play quite different roles. One
wants the detectors to be as efficient as possible, counting all photons (absorbing them in
the process), while the monitors measure the intensity of the incoming beam, and must
as such be almost transparent, interacting only with (roughly) 0.1-1% of the photons
passing by. In computer simulations, it is of course possible to detect every xray without
absorbing it or disturbing any of its parameters. Hence, the two components have very
similar functions in the simulations, and we do not distinguish between them. For
simplicity, they are from here on just called monitors.
Another important difference between computer simulations and real experiments is

that one may allow the monitor to be sensitive to any xray property, as e.g. direction,
energy, and divergence, in addition to what is found in real-world detectors (space and
time). One may, in fact, let the monitor record correlations between these properties.
When a monitor detects a xray, a number counting variable is incremented: ni =

ni−1 + 1. In addition, the photon weight pi is added to the weight counting variable:
Ii = Ii−1+ pi, and the second moment of the weight is updated: M2,i =M2,i−1+ p2i . As
also discussed chapter 2, after a simulation of N rays the detected intensity (in units of

photonts/sec.) is IN , while the estimated errorbar is
√
M2

2,N .

Several different monitor components have been developed for McXtrace, but we have
decided to support only the most important ones. One example of the monitors we have
omitted is the single monitor, Monitor, that measures just one number (with errorbars)
per simulation. This effect is mirrored by any of the 1- or 2-dimensional components we
support, e.g. the PSD monitor. In case additional functionality of monitors is required,
a few lines of code in existing monitors can easily be modified.
Another solution is the “Swiss army knife” of monitors, Monitor nD, that can handle

almost any simulation requirement, but may prove challenging for inexperienced users
or users who like to make their own modifications.

50

8.1. Monitor: Simple intensity monitor

Input Parameters for component Monitor from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

TheMonitor component is a simple photon counter that merely detects the integrated
intensity in an aperture xwidth by yheight m2. It does not write a separate datafile,
but reports the I, Ierr,N -signals to the console. The signals represent intensity, error
estimate, and number of statistical events (photon rays). If a scan is performed, the
intensity recorded by Monitor will be written to the scan datafile.

8.2. E monitor: The energy-sensitive monitor

Input Parameters for component E_monitor from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component E monitor is sensitive to the xray energy, which in binned in nE
bins between Emin and Emax (in keV).

The output parameters from E monitor are the total counts, and a file with 1-
dimensional data vs. E, similar to TOF monitor.

8.3. L monitor: The wavelength sensitive monitor

Input Parameters for component L_monitor from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component L monitor is very similar to E monitor. This component is just sen-
sitive to the xray wavelength. The wavelength spectrum is output in a one-dimensional
histogram. between λmin and λmax (measured in Å).

As for the two other 1-dimensional monitors, this component outputs the total counts
and a file with the histogram.

8.4. PSD monitor: The PSD monitor

Input Parameters for component PSD_monitor from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component PSD monitor resembles other monitors, e.g. Monitor, and also prop-
agates the photon ray to the detector surface in the (x, y)-plane, where the detector
window is set by the x and y input coordinates. The PSD monitor is sensitive to the

51

arrival position of the of the photon ray. The rectangular monitor window, given by the
x and y limits is divided into nx × ny pixels.

The output from PSD monitor is the integrated counts, n, I,M2, as well as three two-
dimensional arrays of counts: n(x, y), I(x, y),M2(x, y). The arrays are written to a file,
filename, and can be read e.g. by the tool mxplot, see the system manual.

8.5. PSD monitor coh: The coherent PSD monitor

Input Parameters for component PSD_monitor_coh from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component PSD monitor coh closely resembles its parent the PSD monitor,
and also propagates the photon ray to the detector surface in the (x, y)-plane, where the
detector window is set by the x and y input coordinates. The coherent PSD monitor,
though, is also sensitive considers the phase of the photon ray and emits not one but
two datafiles, where one (filename.abs) represents the coherent intensity and the other
(filename.arg) the phase of the collected beam.
The first output file (.abs) from PSD monitor coh is the integrated counts, n, I,M2, as

well as three two-dimensional arrays of counts: n(x, y), I(x, y),M2(x, y). These arrays
are written to a file, filename.abs, and can be read e.g. by the tool mxplot, see the
system manual. Likewise, the second output file (.arg) contains the integrated phases,
and are written to the file filename.arg

8.6. PSD monitor 4PI: A 4 PI steradian spherical monitor.

Input Parameters for component PSD_monitor_4PI from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

PSD monitor 4PI is an unphysical idealized component. It takes on the shape of a
complete sphere with a given radius, records the longitude and latitude of photon rays as
the pass through the sphere. The sphere is binned in constant spaced bins in longitude
and latitude. This has the consequence that the image will be distorted when plotted
onto a plane, much like projections of a world map.
The output from PSD monitor is the integrated counts, n, I,M2, as well as three two-

dimensional arrays of counts: n(x, y), I(x, y),M2(x, y). The arrays are written to a file,
filename, and can be read e.g. by the tool mxplot, see the system manual.

8.7. EPSD monitor: Energy-selective PSD monitor

Input Parameters for component EPSD_monitor from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

52

The EPSD monitor closely resembles PSD monitor with the difference that this
component may be given an energy interval: [Emin, Emax], in which it is sensitive. Pho-
ton rays falling within this interval are detected, those outside are ignored.
The output from EPSD monitor is the integrated counts, n, I,M2, as well as three

two-dimensional arrays of counts: n(x, y), I(x, y),M2(x, y). The arrays are written to a
file, filename, and can be read e.g. by the tool mxplot, see the system manual.

8.8. W psd monitor: A power vs. position monitor

Input Parameters for component W_psd_monitor from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

doc. pend.

53

8.9. Monitor nD: A general Monitor for 0D/1D/2D records

Input Parameters for component Monitor_nD from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

The componentMonitor nD is a general Monitor that may output any set of physical
parameters regarding the passing photons. The generated files are either a set of 1D
signals ([Intensity] vs. [Variable]), or a single 2D signal ([Intensity] vs. [Variable 1] vs.
[Variable 2]), and possibly a simple long list of selected physical parameters for each
photon ray.

The input parameters for Monitor nD are its dimensions xmin, xmax, ymin, ymax
(in metres) and an options string describing what to detect, and what to do with
the signals, in clear language. The xwidth, yheight, zdepth may also be used to enter
dimensions.

Eventhough the possibilities of Monitor nD are numerous, its usage remains as simple
as possible, specially in the options parameter, which ’understands’ normal language.
The formatting of the options parameter is free, as long as it contains some specific
keywords, that can be sometimes followed by values. The no or not option modifier
will revert next option. The all option can also affect a set of monitor configuration
parameters (see below).

As the usage of this component enables to monitor virtually anything, and thus the
combinations of options and parameters is infinite, we shall only present the most ba-
sic configuration. The reader should refer to the on-line component help, using e.g.
mcdoc Monitor_nD.comp.

8.9.1. The Monitor nD geometry

The monitor shape can be selected among seven geometries:

1. (square) The default geometry is flat rectangular in (xy) plane with dimensions
xmin, xmax, ymin, ymax, or xwidth, yheight.

2. (box) A rectangular box with dimensions xwidth, yheight, zdepth.

3. (disk) When choosing this geometry, the detector is a flat disk in (xy) plane. The
radius is then

radius = max(abs [xmin, xmax, ymin, ymax, xwidth/2, yheight/2]). (8.1)

4. (sphere) The detector is a sphere with the same radius as for the disk geometry.

5. (cylinder) The detector is a cylinder with revolution axis along y (vertical). The
radius in (xz) plane is

radius = max(abs [xmin, xmax, xwidth/2]), (8.2)

54

and the height along y is

height = |ymax − ymax|oryheight. (8.3)

6. (banana) The same as the cylinder, but without the top/bottom caps, and on a
restricted angular range. The angular range is specified using a theta variable
limit specification in the options.

7. (previous) The detector has the shape of the previous component. This may be a
surface or a volume. In this case, the photon is detected on the previous component,
and there is no photon propagation.

By default, the monitor is flat, rectangular. Of course, you can choose the orientation
of the Monitor nD in the instrument description file with the usual ROTATED modifier.

For the box, sphere and cylinder, the outgoing photons are monitored by default, but
you can choose to monitor incoming photons with the incoming option.

At last, the slit or absorb option will ask the component to absorb the photons that
do not intersect the monitor. The exclusive option word removes photons which are
similarly outside the monitor limits (that may be other than geometrical).

The parallel option keyword is of common use in the case where the Monitor nD is
superposed with other components. It ensures that photons are detected independently
of other geometrical constrains. This is generally the case when you need e.g. to place
more than one monitor at the same place.

8.9.2. The photon parameters that can be monitored

There are many different variables that can be monitored at the same time and position.
Some can have more than one name (e.g. energy or omega).

1 kx ky kz k wavevector [Angs=1] (u sua l l y ax i s are
2 vx vy vz v [m/ s] x=horz . , y=ver t . , z=on ax i s)
3 x y z [m] Distance , Po s i t i on
4 kxy vxy xy rad iu s [m] Radial wavevector , v e l o c i t y and po s i t i o n
5 t time [s] Time o f F l i gh t
6 energy omega [meV]
7 lambda wavelength [Angs]
8 p i n t e n s i t y f l u x [n/ s] or [n/cmˆ2/ s]
9 ncounts [1]

10 sx sy sz [1] Spin
11 vdiv ydiv dy [deg] v e r t i c a l d ive rgence (y)
12 hdiv d ive rgence xdiv [deg] h o r i z on t a l d ive rgence (x)
13 ang le [deg] d ive rgence from d i r e c t i o n
14 theta l ong i tude [deg] l ong i tude (x/z) [for sphere and c y l i nd e r

]
15 phi l a t t i t u d e [deg] l a t t i t u d e (y/z) [for sphere and c y l i nd e r

]

as well as four other special variables

55

1 user user1 w i l l monitor the [Mon Name] Vars . UserVar iab le
{1 |2}

2 user2 user3 to be as s i gned in an other component (s ee below)

To tell the component what you want to monitor, just add the variable names in the
options parameter. The data will be sorted into bins cells (default is 20), between some
default limits, that can also be set by user. The auto option will automatically determine
what limits should be used to have a good sampling of signals.

8.9.3. Important options

Each monitoring records the flux (sum of weights p) versus the given variables, except
if the signal=<variable> word is used in the options.

The auto option is probably the most useful one: it asks the monitor to determine
automatically the best limits for each variable, in order to obtain the most significant
monitored histogram. This option should preceed each variable, or be located after all
variables in which case they are all affected. On the other hand, one may manually
set the limits with the limits=[min max] option. If no limits are set monitor nd uses
predefined limits that usually make sense for most x-ray scattering simulations. Example:
the default upper energy limit is 100 meV, but may be changed with an options string
like options="energy limits 0 200". Note that the limits also apply in list mode (see
below).

The log and abs options should be positioned before each variable to specify loga-
rithmic binning and absolute value respectively.

The borders option will monitor variables that are outside the limits. These values
are then accumulated on the ’borders’ of the signal.

8.9.4. The output files

By default, the file names will be the component name, followed by a time stamp and
automatic extensions showing what was monitored (such as MyMonitor.x). You can
also set the filename in options with the file keyword followed by the file name that you
want. The extension will then be added if the name does not contain a dot (.). Finally,
the filename parameter may also be used.

The output files format are standard 1D or 2D McXtrace detector files. The no file
option will inactivate monitor, and make it a single 0D monitor detecting integrated flux
and counts. The verbose option will display the nature of the monitor, and the names
of the generated files.

The 2D output

When you ask the Monitor nD to monitor only two variables (e.g. options = ”x y”),
a single 2D file of intensity versus these two correlated variables will be created.

56

McXtrace monitor Monitor nD equivalent

E monitor options=”energy bins=nchan limits=[EminEmax]”
EPSD monitor options=”energy bins=nE limits=[EminEmax], x bins=nx”

xmin=xmin xmax=xmax

L monitor options=”lambda bins=nh limits=[−λmax/2λmax/2]” file-
name=file

Monitor options=”inactivate”
PSD monitor 4PI options=”theta y, sphere”
PSD monitor options=”x bins=nx, y bins=ny” xmin=xmin xmax=xmax

ymin=ymin ymax=ymax filename=file

Table 8.1.: Using Monitor nD in place of other components. All limits specifications
may be advantageously replaced by an auto word preceeding each monitored
variable. Not all file and dimension specifications are indicated (e.g. filename,
xmin, xmax, ymin, ymax).

The 1D output

The Monitor nD can produce a set of 1D files, one for each monitored variable, when
using 1 or more than 2 variables, or when specifying the multiple keyword option.

The List output

TheMonitor nD can additionally produce a list of variable values for photons that pass
into the monitor. This feature is additive to the 1D or 2D output. By default only 1000
events will be recorded in the file, but you can specify for instance ”list 3000 photons”
or ”list all photons”. This last option may require a lot of memory and generate huge
files. Note that the limits to the measured parameters also apply in this mode. To
exemplify, a monitor nd instance with the option string "list all k" will only record
those photons which have a below 2000 AA−1, whereas an instance with the option string
"list all kx ky kz 0 2000" will record all photons with |kx, ky| < 2000 AA−1 and
0 < vz < 2000 AA−1. Thus, in this latter case, any neutron travelling in the negative
z-direction will be disregarded.

8.9.5. Monitor equivalences

In the following table 8.1, we show how the Monitor nD may substitute any other McX-
trace monitor.

8.9.6. Usage examples
�

1 COMPONENT MyMonitor = Monitor\ nD(
2 xmin = =0.1 , xmax = 0 . 1 ,
3 ymin = =0.1 , ymax = 0 . 1 ,

57

4 opt ions = ” energy auto l im i t s ”)

will monitor the photon energy in a single 1D file (a kind of E monitor)

� options = "banana, theta limits=[10,130], bins=120, y bins=30"

is a theta/height banana detector.

� options = "banana, theta limits=[10,130], auto time"

is a theta/time-of-flight banana detector.

� options="x bins=30 limits=[-0.05 0.05] ; y"

will set the monitor to look at x and y. For y, default bins (20) and limits values
(monitor dimensions) are used.

� options="x y, auto, all bins=30"

will determine itself the required limits for x and y.

� options="multiple x bins=30, y limits=[-0.05 0.05], all auto"

will monitor the photon x and y in two 1D files.

� options="x y z kx ky kz, all auto"

will monitor each of these variables in six 1D files.

� options="x y z kx ky kz, list all, all auto"

will monitor all these photons’ variables in one long list, one row per photon event.

� options="multiple x y z kx ky kz, and list 2000, all auto"

will monitor all the photons’ variables in one list of 2000 events and in six 1D files.

� options="signal=energy, x y"

is a PSD monitor recording the mean energy of the beam as a function of x and y.

8.9.7. Monitoring user variables

There are two ways to monitor any quantity with Monitor nD. This may be e.g. the
number of reflections in a mirror system, or the wavevector and energy transfer at a
sample. The only requirement is to define the user1 (and optionally user2,user3)
variables of a given Monitor nD instance.

Directly setting the user variables (simple)

The first method uses the user1 and username1 component parameters to directly
transfer the value and label, such as in the following example:

1 TRACE
2 (. . .)
3 COMPONENT UserMonitor = Monitor\ nD(
4 user1 = log (t) , username1=”Log (time) ” ,
5 opt ions =”auto user1 ”)

58

The values to assign to user2 and user3 must be global instrument variables, or a
component output variable as in user1=MC_GETPAR(some_comp, outpar). Similarly,
the user2,user3 and username2,username3 parameters may be used to control the
second and third user variable, to produce eventually 2D/3D user variable correlation
data and custom event lists.

Setting indirectly the user variables (only for professionals)

It is possible to control the user variables of a given Monitor nD instance anywhere in
the instrument description. This method requires more coding, but has the advantage
that a variable may be defined to store the result of a computation locally, and then
transfer it into the UserMonitor, all fitting in an EXTEND block.

This is performed in a 4-step process:

1. Declare that you intend to monitor user variables in a Monitor nD instance (defined
in TRACE):

1 DECLARE
2 %{ (. . .)
3 %inc lude ”monitor nd= l i b ”
4 MONND\ DECLARE(UserMonitor) ; // w i l l monitor custom th i n g s in

UserMonitor
5 %}

2. Initialize the label of the user variable (optional):

1 INITIALIZE
2 %{
3 (. . .)
4 MONND\ USER\ TITLE(UserMonitor , 1 , ”Log (time) ”) ;
5 %}

The value ’1’ could be ’2’ or ’3’ for the user2,user3 variable.

3. Set the user variable value in a TRACE component EXTEND block:

1 TRACE
2 (. . .)
3 COMPONENT blah = blah \ comp (. . .)
4 EXTEND
5 %{ // a t t ach a va lue to user1 in UserMonitor , cou ld be much more

complex here .
6 MONND\ USER\ VALUE(UserMonitor , 1 , l og (t)) ;
7 %}
8 (. . .)

4. Tell the Monitor nD instance to record user variables:

59

1 TRACE
2 (. . .)
3 COMPONENT UserMonitor = Monitor\ nD(opt ions=”auto user1 ”)
4 (. . .)

Setting the user variable values may either make use of the photon parameters (x,y,z,
vx,vy,vz, phi, t, Ex,Ey,Ez, p), access the internal variables of the component that sets the
user variables (in this example, those from the blah instance), access any component
OUTPUT parameter using the MC_GETPAR C macro(see chapter A), or simply use a
global instrument variable. Instrument parameters can not be used directly.

8.10. PreMonitor nD: Store photon rays for possible later
detection.

Input Parameters for component PreMonitor_nD from monitors

1 <Parameter = value >, [Unit] , De s c r ip t i on

The first immediate usage of the Monitor nD component is when one requires to
identify cross-correlations between some photon parameters, e.g. position and divergence
(aka phase-space diagram). This latter monitor would be merely obtained with:

options="x dx, auto", bins=30

This example records the correlation between position and divergence of photons at a
given instrument location.

It is also possible to search for cross-correlation between two part of the instrument
simulation. One example is the acceptance phase-diagram, which shows the photon
caracteristics at the input required to reach the end of the simulation. This spatial cor-
relation may be revealed using the PreMonitor nD component. This latter stores the
photon parameters at a given instrument location, to be used at an other Monitor nD
location for monitoring.

The only parameter of PreMonitor nD is the name of the associated Monitor nD
instance, which should use the premonitor option, as in the following example:

COMPONENT CorrelationLocation = PreMonitor_nD(comp = CorrelationMonitor)

AT (...)

(... e.g. a bunch of optics)

COMPONENT CorrelationMonitor = Monitor_nD(

options="x dx, auto, all bins=30, premonitor")

AT (...)

60

which performs the same monitoring as the previous example, but with a spatial cor-
relation constrain. Indeed, it records the position vs the divergence of photons at the
correlation location, but only if they reach the monitoring position. All usual Moni-
tor nD variables may be used, except the user variables. The latter may be defined as
described in section 8.9.7 in an EXTEND block.

61

9. Special-purpose components

The chapter deals with components that are not easily included in any of the other
chapters because of their special nature, but which are still part of the McXtrace system.

One part of these components deals with splitting simulations into two (or more)
stages. For example, the front end of a beamline is often not changed much, and a long
simulation of photon rays “surviving” through initial optics could be reused for several
simulations of the beamline back-end, speeding up the simulations by (typically) one or
two orders of magnitude. The components for doing this trick is Virtual input and
Virtual output, which stores and reads photon rays, respectively.

For integration with SHADOW [Rio+11] the components Shadow inpt and Shadow output
have been written.
Progress bar is a simulation utility that displays the simulation status, but assumes

the form of a component.

62

9.1. Progress bar: Dynamic information output

Input Parameters for component Progress_bar from misc

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component Progress bar is a special version of an Arm and has no effect on the
x-ray. Only one instance of progress bar is allowed - usually it is the very first component
of a beamline simulation.
If percent> 0 (default is 10%) the porgress bar prints an update when approximately

percent % of the total number of rays have been simulated. If minutes> 0 (overrides
percen) this update happens approx. every minutes min. If flag save ̸= 0, the update
process also includes saving the status of all monitors to disk. This is useful if something
is likely to interrupt the progress of long simulations ot avoid loss of data. profile may
be set to save the simulation profile to a filename other than the name of the instrument
(the default).

9.2. Virtual output: Saving the first part of a split simulation

Input Parameters for component Virtual_output from misc

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component Virtual output stores the photon ray parameters at the end of the
first part of a split simulation. The idea is to let the next part of the split simulation be
performed by another instrument file, which reads the stored photon ray parameters by
the component Virtual input.
All photon ray parameters are saved to the output file, which is by default of “text”

type, but can also assume the binary formats “float” or “double”. The storing of photon
rays continues until the specified number of simulations have been performed.
buffer-size may be used to limit the size of the output file, but absolute intentities are

then likely to be wrong. Exept when using MPI, we recommend to use the default value
of zero, saving all photon rays. The size of the file is then controlled indirectly with the
general ncounts parameter.

9.3. Virtual input: Starting the second part of a split
simulation

Input Parameters for component Virtual_input from misc

1 <Parameter = value >, [Unit] , De s c r ip t i on

The component Virtual input resumes a split simulation where the first part has
been performed by another instrument and the photon ray parameters have been stored
by the component Virtual output.

63

All photon ray parameters are read from the input file, which is by default of “text”
type, but can also assume the binary formats “float” and “double”. Reading of photon
rays continues until the specified number of rays have been simulated or the file has been
exhausted. If desirable, the input file can be reused a number of times, determined by
the optional parameter repeat-count. This is only useful if the present simulation makes
use of MC choices, otherwise the same outcome will result for each repetition of the
simulation (see chapter 2).
Care should be taken when dealing with absolute intensities, which will be correct

only when the input file has been exhausted at least once.
The simulation ends with either the end of the repeated file counts, or with the normal

end with ncountMcXtrace simulation events. We recommend controlling the simulation
on repeat-count by using a larger ncount value.

9.4. Shadow input: Reading input from Shadow

Input Parameters for component Shadow_input from misc

1 <Parameter = value >, [Unit] , De s c r ip t i on

Documentation pending

9.5. Shadow output: Saving the photon rays for use with
SHADOW

Input Parameters for component Shadow_output from misc

1 <Parameter = value >, [Unit] , De s c r ip t i on

Documentation pending.

64

A. Libraries and conversion constants

The McXtrace Library contains a number of built-in functions and conversion constants
which are useful when constructing components. These are stored in the share directory
of the MCXTRACE library.
Within these functions, the ’Run-time’ part is available for all component/instrument

descriptions. The other parts are dynamic, that is they are not pre-loaded, but only
imported once when a component requests it using the %include McXtrace keyword.
For instance, within a component C code block, (usually SHARE or DECLARE):

1 %inc lude ” read tab l e= l i b ”

will include the ’read table-lib.h’ file, and the ’read table-lib.c’ (unless the --no-runtime
option is used with mcxtrace). Similarly,

1 %inc lude ” read tab l e= l i b . h”

will only include the ’read table-lib.h’. The library embedding is done only once for
all components (like the SHARE section). For an example of implementation, see
Res monitor.
In this Appendix, we present a short list of both each of the library contents and the

run-time features.

A.1. Run-time calls and functions (mcxtrace-r)

Here we list a number of preprogrammed macros and functions which may ease the task
of writing component and instrument definitions. By convention macros are in upper
case whereas functions are in lower case.

A.1.1. Photon propagation

Propagation routines perform all necessary operations to transport x-rays from one point
to an other. Except when using the special ALLOW_BACKPROP; call prior to executing any
PROP_* propagation, the x-rays which have negative propagation lengths are removed
automatically.

� ABSORB. This macro issues an order to the overall McXtrace simulator to in-
terrupt the simulation of the current x-ray history and to start a new one.

� PROP Z0. Propagates the x-ray to the z = 0 plane, by adjusting (x, y, z), ϕ, and t
accordingly from knowledge of the x-ray wavevector (kx, ky, kz). If the propagation
length is negative, the x-ray is absorbed, except if a ALLOW_BACKPROP; preceeds it.

65

For components that are centered along the z-axis, use the _intersect functions
to determine intersection time(s), and then a PROP_DL call.

� PROP X0, PROP Y0. These macros are analogous to PROP_Z0 except they
propagate to the x = 0 and y = 0 planes respectively.

� PROP DL(dl). Propagates the x-ray by the length dl, adjusting (x, y, z), ϕ, t
accordingly, from knowledge of the x-ray wavevector.

� ALLOW BACKPROP. Indicates that the next propagation routine will not
remove the x-ray, even if negative propagation lengths are found. Subsequent
propagations are not affected.

� SCATTER. This macro is used to denote a scattering event inside a component.
It should be used to indicate that a component has interacted with the x-ray (e.g.
scattered or detected). This does not affect the x-ray state (see, however, Beam-
stop), and it is mainly used by the MCDISPLAY section and the GROUP modifier.
See also the SCATTERED variable (below).

A.1.2. Coordinate and component variable retrieval

� MC GETPAR(comp, outpar). This may be used in e.g. the FINALLY section
of an instrument definition to reference the parameters of a component.

� NAME CURRENT COMP gives the name of the current component as a
string.

� POS A CURRENT COMP gives the absolute position of the current compo-
nent. A component of the vector is referred to as POS A CURRENT COMP.i
where i is x, y or z.

� ROT A CURRENT COMP and ROT R CURRENT COMP give the ori-
entation of the current component as rotation matrices (absolute orientation and
the orientation relative to the previous component, respectively). A component of
a rotation matrix is referred to as ROT A CURRENT COMP[m][n], where m and
n are 0, 1, or 2 standing for x, y and z coordinates respectively.

� POS A COMP(comp) gives the absolute position of the component with the
name comp. Note that comp is not given as a string. A component of the vector
is referred to as POS A COMP(comp).i where i is x, y or z.

� ROT A COMP(comp) and ROT R COMP(comp) give the orientation of the
component comp as rotation matrices (absolute orientation and the orientation
relative to its previous component, respectively). Note that comp is not given as a
string. A component of a rotation matrice is referred to as ROT A COMP(comp)[m][n],
where m and n are 0, 1, or 2.

66

� INDEX CURRENT COMP is the number (index) of the current component
(starting from 1).

� POS A COMP INDEX(index) is the absolute position of component index.
POS A COMP INDEX (INDEX CURRENT COMP) is the same as
POS A CURRENT COMP. You may use
POS A COMP INDEX (INDEX CURRENT COMP+1)
to make, for instance, your component access the position of the next component
(this is usefull for automatic targeting). A component of the vector is referred to
as POS A COMP INDEX(index).i where i is x, y or z.

� POS R COMP INDEX works the same as above, but with relative coordinates.

� STORE XRAY(index, x, y, z, kx, ky, kz, phi, t, Ex,Ey,Ez, p) stores the current
x-ray state in the trace-history table, in local coordinate system. index is usu-
ally INDEX CURRENT COMP. This is automatically done when entering each
component of an instrument.

� RESTORE XRAY(index, x, y, z, kx, ky, kz, phi, t, Ex,Ey,Ez, p) restores the x-
ray state to the one at the input of the component index. To ignore a component
effect, use RESTORE XRAY (INDEX CURRENT COMP,
x, y, z, kx, ky, kz, phi, Ex,Ey,Ez, p) at the end of its TRACE section, or in its EX-
TEND section. These x-ray states are in the local component coordinate systems.

� SCATTERED is a variable set to 0 when entering a component, which is incre-
mented each time a SCATTER event occurs. This may be used in the EXTEND

sections to determine whether the component interacted with the current x-ray.

� extend list(n, &arr, &len, elemsize). Given an array arr with len elements each
of size elemsize, make sure that the array is big enough to hold at least n elements,
by extending arr and len if necessary. Typically used when reading a list of
numbers from a data file when the length of the file is not known in advance.

� mcset ncount(n). Sets the number of x-ray histories to simulate to n.

� mcget ncount(). Returns the number of x-ray histories to simulate (usually set
by option -n).

� mcget run num(). Returns the number of x-ray histories that have been simu-
lated until now.

A.1.3. Coordinate transformations

� coords set(x, y, z) returns a Coord structure (like POS A CURRENT COMP)
with x, y and z members.

� coords get(P, &x, &y, &z) copies the x, y and z members of the Coord structure
P into x, y, z variables.

67

� coords add(a, b), coords sub(a, b), coords neg(a) enable to operate on coordi-
nates, and return the resulting Coord structure.

� rot set rotation(Rotation t, ϕx, ϕy, ϕz) Get transformation matrix for rotation
first ϕx around x axis, then ϕy around y, and last ϕz around z. t should be a
’Rotation’ ([3][3] ’double’ matrix).

� rot mul(Rotation t1, Rotation t2, Rotation t3) performs t3 = t1.t2.

� rot copy(Rotation dest, Rotation src) performs dest = src for Rotation arrays.

� rot transpose(Rotation src, Rotation dest) performs dest = srct.

� rot apply(Rotation t, Coords a) returns a Coord structure which is t.a

A.1.4. Mathematical routines

� NORM(x, y, z). Normalizes the vector (x, y, z) to have length 1.

� scalar prod(ax, ay, az, bx, by, bz). Returns the scalar product of the two vectors
(ax, ay, az) and (bx, by, bz).

� vec prod(&ax,&ay,&az, bx,by,bz, cx,cy,cz). Sets (ax, ay, az) equal to the vector
product (bx, by, bz)× (cx, cy, cz).

� rotate(&x,&y,&z,vx,vy,vz,φ,ax,ay,az). Set (x, y, z) to the result of rotating the
vector (vx, vy, vz) the angle φ (in radians) around the vector (ax, ay, az).

� normal vec(nx, ny, nz, x, y, z). Computes a unit vector (nx, ny, nz) normal to
the vector (x, y, z).∗

� solve 2nd order(*t0,*t1, A, B, C). Solves the 2nd order equation At2+Bt+C = 0
and puts the solutions in *t0 and *t1. The smallest positive solution into pointer
*t0. If t1=NULL it is ignored and the second solution is discarded.

A.1.5. Output from detectors

Details about using these functions are given in the McXtrace User Manual.

� DETECTOR OUT 0D(...). Used to output the results from a single detector.
The name of the detector is output together with the simulated intensity and
estimated statistical error. The output is produced in a format that can be read
by McXtrace front-end programs.

� DETECTOR OUT 1D(...). Used to output the results from a one-dimensional
detector. Integrated intensities error etc. is also reported as for DETECTOR OUT 0D.

� DETECTOR OUT 2D(.). Used to output the results from a two-dimentional
detector. Integrated intensities error etc. is also reported as for DETECTOR OUT 0D.

68

� mcinfo simulation(FILE *f, mcformat, char *pre, char *name) is used to ap-
pend the simulation parameters into file f (see for instance Res monitor). Inter-
nal variable mcformat should be used as specified. Please contact the authors for
further information.

A.1.6. Ray-geometry intersections

� inside rectangle(x, y, xw, yh). Return 1 if −xw/2 ≤ x ≤ xw/2 AND −yh/2 ≤
y ≤ yh/2. Else return 0.

� box intersect(&l1, &l2, x, y, z, kx, ky, kz, dx, dy, dz). Calculates the (0, 1,
or 2) intersections between the x-ray path and a box of dimensions dx, dy, and
dz, centered at the origin for a x-ray with the parameters (x, y, z, kx, ky, kz). The
intersection lengths are returned in the variables l1 and l2, with l1 < l2. In the case
of less than two intersections, t1 (and possibly t2) are set to zero. The function
returns true if the x-ray intersects the box, false otherwise.

� cylinder intersect(&l1, &l2, x, y, z, kx, ky, kz, r, h). Similar to box intersect,
but using a cylinder of height h and radius r, centered at the origin.

� sphere intersect(&l1, &l2, x, y, z, kx, ky, kz, r). Similar to box intersect, but
using a sphere of radius r.

� ellipsoid intersect(&l1, &l2, x, y, z, kx, ky, kz, a,b,c,Q,). Similar to box intersect,
but using an ellipsoid with half-axis a,b,c oriented by the rotation matrix Q. If
Q = I, a is along the x-axis, b along y and c along z

A.1.7. Random numbers

By default McXtrace uses the included Mersenne Twister[MN98] algorithm for generat-
ing pseudo random numbers.

� rand01(). Returns a random number distributed uniformly between 0 and 1.

� randnorm(). Returns a random number from a normal distribution centered
around 0 and with σ = 1. The algorithm used to sample the normal distribution
is explained in Ref. [Pre+86, ch.7].

� randpm1(). Returns a random number distributed uniformly between -1 and 1.

� randtriangle(). Returns a random number from a triangular distribution between
-1 and 1.

� randvec target circle(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz, rf). Generates
a random vector (vx, vy, vz), of the same length as (aimx, aimy, aimz), which is
targeted at a disk centered at (aimx, aimy, aimz) with radius rf (in meters),
and perpendicular to the aim vector.. All directions that intersect the circle are

69

chosen with equal probability. The solid angle of the circle as seen from the po-
sition of the x-ray is returned in dΩ. This routine was previously called rand-
vec target sphere (which still works).

� randvec target rect angular(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz,h,w,Rot)
does the same as randvec target circle but targetting at a rectangle with angular
dimensions h and w (in radians, not in degrees as other angles). The rotation
matrix Rot is the coordinate system orientation in the absolute frame, usually
ROT A CURRENT COMP.

� randvec target rect(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz,height, width,Rot)
is the same as randvec target rect angular but height and width dimensions are
given in meters. This function is useful to e.g. target at a guide entry window or
analyzer blade.

A.2. Reading a data file into a vector/matrix (Table input,
read table-lib)

The read_table-lib library provides functionalities for reading text (and binary) data
files. To use this library, add a %include "read_table-lib" in your component def-
inition DECLARE or SHARE section. Tables are structures of type t_Table (see
read_table-lib.h file for details):

1 /* t Tab l e s t r u c t u r e (most important members) */
2 double *data ; /* Use Tab le Index (Table , i j) to e x t r a c t [i , j]

e lement */
3 long rows ; /* number o f rows */
4 long columns ; /* number o f columns */
5 char *header ; /* the header wi th comments */
6 char * f i l ename ; /* f i l e name or t i t l e */
7 double min x ; /* minimum va lue o f 1 s t column/ vec t o r */
8 double max x ; /* maximum va lue o f 1 s t column/ vec t o r */

Available functions to read a single vector/matrix are:

� Table Init(&Table, rows, columns) returns an allocated Table structure. Use
rows = columns = 0 not to allocate memory and return an empty table. Calls to
Table Init are optional, since initialization is being performed by other functions
already.

� Table Read(&Table, filename, block) reads numerical block number block (0 to
catenate all) data from text file filename into Table, which is as well initialized in
the process. The block number changes when the numerical data changes its size,
or a comment is encoutered (lines starting by ’# ; % /’). If the data could not be
read, then Table.data is NULL and Table.rows = 0. You may then try to read it
using Table Read Offset Binary. Return value is the number of elements read.

70

� Table Read Offset(&Table, filename, block, &offset, nrows) does the same as
Table Read except that it starts at offset offset (0 means begining of file) and
reads nrows lines (0 for all). The offset is returned as the final offset reached after
reading the nrows lines.

� Table Read Offset Binary(&Table, filename, type, block, &offset, nrows, ncolumns)
does the same as Table Read Offset, but also specifies the type of the file (may
be ”float” or ”double”), the number nrows of rows to read, each of them having
ncolumns elements. No text header should be present in the file.

� Table Rebin(&Table) rebins all Table rows with increasing, evenly spaced first
column (index 0), e.g. before using Table Value. Linear interpolation is performed
for all other columns. The number of bins for the rebinned table is determined
from the smallest first column step.

� Table Info(Table) print information about the table Table.

� Table Index(Table,m, n) reads the Table[m][n] element.

� Table Value(Table, x, n) looks for the closest x value in the first column (index
0), and extracts in this row the n-th element (starting from 0). The first column
is thus the ’x’ axis for the data.

� Table Free(&Table) free allocated memory blocks.

� Table Value2d(Table, X, Y) Uses 2D linear interpolation on a Table, from (X,Y)
coordinates and returns the corresponding value.

Available functions to read an array of vectors/matrices in a text file are:

� Table Read Array(File, &n) read and split file into as many blocks as neces-
sary and return a t_Table array. Each block contains a single vector/matrix. This
only works for text files. The number of blocks is put into n.

� Table Free Array(&Table) free the Table array.

� Table Info Array(&Table) display information about all data blocks.

The format of text files is free. Lines starting by ’# ; % /’ characters are considered to
be comments, and stored in Table.header. Data blocks are vectors and matrices. Block
numbers are counted starting from 1, and changing when a comment is found, or the
column number changes. For instance, the file ’MCXTRACE/data/Rh.txt’ (Material
data for Rhodium) looks like:

1 #Rh (Z 45)
2 #Atomic weight : A[r] 102.9055
3 #Nominal dens i ty : rho 1 .2390E+01
4 # sigma [a] (barns /atom) = [mu/rho] (cm\ˆ2 g\ˆ=1) . 1 .70879E+02
5 # E(eV) [mu/rho] (cm\ˆ2 g\ˆ=1) = f [2] (e atom\ˆ=1) . 4 .08922E+05
6 # 14 edges . Edge en e r g i e s (keV) :

71

7 #
8 #
9 # K 2.32199E+01 L I 3 .41190E+00 L I I 3 .14610E+00 L I I I

3 .00380E+00
10 # M I 6.27100E=01 M I I 5 .21000E=01 M I I I 4 .96200E=01 M IV

3.11700E=01
11 # M V 3.07000E=01 N I 8.10000E=02 N I I 4 .79000E=02 N I I I

4 .79000E=02
12 # N IV 2.50000E=03 N V 2.50000E=03
13 #
14 # Re l a t i v i s t i c c o r r e c t i o n es t imate f [r e l] (H82 ,3/5CL) = =4.0814E=01,
15 # =2.5440E=01 e atom\ˆ=1
16 # Nuclear Thomson c o r r e c t i o n f [NT] = =1.0795E=02 e atom\ˆ=1
17 #
18 #

===

19 #Form Factors , Attenuation and Sca t t e r i ng Cross=s e c t i o n s
20 #Z=45, E = 0.001 = 433 keV
21 #
22 # E f [1] f [2] [mu/rho] [sigma/rho]

[mu/rho] [mu/rho] [K] lambda
23 # Pho t o e l e c t r i c Coh+inc Total
24 # keV e atom\ˆ=1 e atom\ˆ=1 cm\ˆ2 g\ˆ=1 cm\ˆ2 g\ˆ=1

cm\ˆ2 g\ˆ=1 cm\ˆ2 g\ˆ=1 nm
25 1.069000E=02 1.89417E+00 4.8055E+00 1.8382E+05 1.1514E=04 1 .8382E+05

0 .000E+00 1.160E+02
26 1.142761E=02 2.09662E+00 5.1028E+00 1.8260E+05 1.5865E=04 1 .8260E+05

0 .000E+00 1.085E+02
27 1.221612E=02 2.32705E+00 5.4019E+00 1.8082E+05 2.1741E=04 1 .8082E+05

0 .000E+00 1.015E+02
28 1.305903E=02 2.58575E+00 5.6998E+00 1.7848E+05 2.9628E=04 1 .7848E+05

0 .000E+00 9.494E+01
29 1.396010E=02 2.87263E+00 5.9931E+00 1.7555E+05 4.0158E=04 1 .7555E+05

0 .000E+00 8.881E+01
30 1.492335E=02 3.18714E+00 6.2786E+00 1.7204E+05 5.4136E=04 1 .7204E+05

0 .000E+00 8.308E+01
31 1.595306E=02 3.52819E+00 6.5531E+00 1.6797E+05 7.2588E=04 1 .6797E+05

0 .000E+00 7.772E+01
32 1.705382E=02 3.89415E+00 6.8134E+00 1.6337E+05 9.6809E=04 1 .6337E+05

0 .000E+00 7.270E+01
33 . . .

Binary files should be of type ”float” (i.e. REAL*32) and ”double” (i.e. REAL*64),
and should not contain text header lines. These files are platform dependent (little or
big endian).
The filename is first searched into the current directory (and all user additional

locations specified using the -I option, see the ’Running McXtrace ’ chapter in the User
Manual), and if not found, in the data sub-directory of the MCXTRACE library location.
This way, you do not need to have local copies of the McXtrace Library Data files (see
table 1.1).
A usage example for this library part may be:

72

1 t Table Table ; // dec l a r e a t Tab l e s t r u c t u r e
2 char f i l e []= ”Rh. txt ” ; // a f i l e name
3 double x , y ;
4
5 Table Read(&Table , f i l e , 1) ; // i n i t i a l i z e and read the f i r s t numerical

b l o c k
6 Tab le In fo (Table) ; // d i s p l a y t a b l e in format ions
7 . . .
8 x = Table Index (Table , 2 ,5) ; // read the 3rd row , 6 th column element
9 // o f the t a b l e . Indexes s t a r t a t zero in C

.
10 y = Table Value (Table , 1 . 4 5 , 1) ; // look f o r va lue 1.45 in 1 s t column (x

ax i s)
11 // and e x t r a c t 2nd column va lue o f t h a t row
12 Table Free(&Table) ; // f r e e a l l o c a t e d memory f o r t a b l e

Additionally, if the block number (3rd) argument of Table Read is 0, all blocks will
be catenated. The Table Value function assumes that the ’x’ axis is the first column
(index 0). Other functions are used the same way with a few additional parameters, e.g.
specifying an offset for reading files, or reading binary data.

This other example for text files shows how to read many data blocks:

1 t Table *Table ; // dec l a r e a t Tab l e s t r u c t u r e array
2 long n ;
3 double y ;
4
5 Table = Table Read Array (” f i l e . dat” , &n) ; // i n i t i a l i z e and read the a l l

numerical b l o c k
6 n = Table In fo Array (Table) ; // d i s p l a y in format ions f o r a l l b l o c k s (

a l s o re turns n)
7
8 y = Table Index (Table [0] , 2 ,5) ; // read in 1 s t b l o c k the 3rd row , 6 th

column element
9 // ONLY use Table [i] wi th i < n !

10 Table Free Array (Table) ; // f r e e a l l o c a t e d memory f o r Table

You may look into, for instance, the source files for Lens parab or Filter for other
implementation examples.

A.3. Constants for unit conversion etc.

The following predefined constants are useful for conversion between units

73

Name Value Conversion from Conversion to

DEG2RAD 2π/360 Degrees Radians
RAD2DEG 360/(2π) Radians Degrees
MIN2RAD 2π/(360 · 60) Minutes of arc Radians
RAD2MIN (360 · 60)/(2π) Radians Minutes of arc

FWHM2RMS 1/
√

8 log(2) Full width half maximum Root mean square
(standard deviation)

RMS2FWHM
√

8 log(2) Root mean square (stan-
dard deviation)

Full width half maxi-
mum

MNEUTRON 1.67492 · 10−27 kg Neutron mass, mn

HBAR 1.05459 · 10−34 Js Planck constant, ℏ
PI 3.14159265... π
CELE 1.602176487e-19 Elementary charge (C)
M C 299792458 Speed of light in vacuum

(m/s)
NA 6.02214179e23 Avogadro’s number

(#atoms/g·mole)
RE 2.8179402894e-5 Thomson scattering

length (AA)
E2K 0.506773091264796 Wavenumber (1/AA) Energy (keV)
K2E 1.97326972808327 Energy (keV) Wavenumber (1/AA)

74

B. The McXtrace terminology

This is a short explanation of phrases and terms which have a specific meaning within
McXtrace. We have tried to keep the list as short as possible running the calculated risk
that the reader may occasionally miss an explanation. In this case, you are more than
welcome to contact the McXtrace core team.

� Arm A generic McXtrace component which defines a frame of reference for other
components.

� Component One unit (e.g. optical element) in an x-ray beamline. These are
considered as Types of elements to be instantiated in an Instrument description.

� Component Instance A named Component (of a given Type) inserted in an
Instrument description.

� Definition parameter An input parameter for a component. For example the
radius of a sample component or the divergence of a collimator. Technically, a
definition parameter is translated into a literal constant, which prevents it from
being edited at runtime.

� Input parameter For a component, either a definition parameter or a setting
parameter. These parameters are supplied by the user to define the characteris-
tics of the particular instance of the component definition. For an instrument, a
parameter that can be changed at simulation run-time.

� Instrument An assembly of McXtrace components defining an x-ray beamline.

� Kernel The McXtrace language definition and the associated compiler

� Output parameter An output parameter for a component. For example the
counts in a monitor. An output parameter may be accessed from the instrument
in which the component is used using MC_GETPAR.

� Run-time C code, contained in the files mcxtrace-r.c and mcxtrace-r.h in-
cluded in the McXtrace distribution, that declare functions and variables used by
the generated simulations.

� Setting parameter Similar to a definition parameter, but with the restriction
that the type of the parameter must be declared unless it is a number. In technical
terms, a setting parameter is translated into an actual variable (as opposed to a
definition parameter) which may be dynamically updated.

75

Bibliography

[Mcx] See http://www.mcxtrace.org (cit. on pp. 8, 11).

[Tra] See http://trac.edgewall.com (cit. on p. 8).

[Nis] See http://www.nist.gov/pml/data/ffast/index.cfm (cit. on pp. 10, 28, 33).

[Mcz] See http://trac.mccode.org/report (cit. on p. 11).

[Sha] See http://www.esrf.eu/computing/scientific/raytracing/ (cit. on p. 12).

[ANM11] J Als-Nielsen and D McMorrow. Elements of modern X-ray physics. Wiley,
2011 (cit. on p. 18).

[Bac75] G.E. Bacon. Neutron Diffraction. Oxford University Press, 1975 (cit. on
pp. 39, 44).

[Bau+07] Sondes Trabelsi Bauer et al. “Simulation of X-ray beamlines with the new ray
tracing tool¡ i¿ X¡/i¿ Trace”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 582.1 (2007), pp. 90–92 (cit. on p. 12).

[Bea67] J A Bearden. “X-ray wavelengths”. In: Reviews of Modern Physics 39.1
(1967), p. 78 (cit. on pp. 22, 24).

[BK+13] Erik Bergbäck Knudsen et al. “McXtrace”. English. In: Journal of Applied
Crystallography 46.3 (2013), pp. 679–696. issn: 00218898, 16005767. doi:
10.1107/S0021889813007991 (cit. on p. 27).

[GRR92] Grimmett, G. R., and Stirzakerand D. R. Probability and Random Processes,
2nd Edition. Clarendon Press, Oxford, 1992 (cit. on p. 13).

[Jam80] F. James. In: Rep. Prog. Phys. 43 (1980), p. 1145 (cit. on pp. 12, 13, 17).

[Knu+14] E. B. Knudsen et al. Users’ and Programmers’ Guide to the X-ray tracing
Package McXtrace, version 1.2. DTU Physics, 2014 (cit. on pp. 8, 11, 38).

[Kra23] H. A. Kramers. “XCIII. On the theory of X-ray absorption and of the con-
tinuous X-ray spectrum”. In: Philosophical Magazine Series 6 46.275 (Nov.
1923), pp. 836–871. issn: 1941-5982. doi: 10.1080/14786442308565244
(cit. on p. 22).

[KO79] MO Krause and JH Oliver. “Natural widths of atomic K and L levels, Ka
X-ray lines and several KLL Auger lines”. In: J. Phys. Chem. Ref. Data 8
(1979), pp. 329–338 (cit. on pp. 22, 24).

[LN99] K. Lefmann and K. Nielsen. “McStas, a general software package for neutron
ray-tracing simulations”. In: Neutron News 10 (1999), pp. 20–23. doi: 10.
1080/10448639908233684 (cit. on p. 8).

76

https://doi.org/10.1107/S0021889813007991
https://doi.org/10.1080/14786442308565244
https://doi.org/10.1080/10448639908233684
https://doi.org/10.1080/10448639908233684

[MN98] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator”.
In: ACM Transactions on Modeling and Computer Simulation (TOMACS)
8.1 (1998), pp. 3–30 (cit. on p. 69).

[Pre+86] W. H. Press et al. Numerical Recipes in C. Cambridge University Press, 1986
(cit. on p. 69).

[Rio+11] M Sanchez del Rio et al. “SHADOW3: a new version of the synchrotron
X-ray optics modelling package”. In: Journal of Synchrotron Radiation 18.5
(2011), p. 0 (cit. on pp. 12, 62).

[Sch08] F Schäfers. “The BESSY raytrace program RAY”. In: Modern Developments
in X-Ray and Neutron Optics (2008), pp. 9–41 (cit. on p. 12).

[SKS96] A Snigirev, V Kohn, and I Snigireva. “A compound refractive lens for focus-
ing high-energy X-rays”. In: Nature (1996) (cit. on p. 30).

[Squ78] G.L. Squires. Thermal Neutron Scattering. Cambridge University Press, 1978
(cit. on p. 45).

[TK01] Takashi Tanaka and Hideo Kitamura. “SPECTRA: a synchrotron radiation
calculation code”. In: Journal of Synchrotron Radiation 8.6 (2001), pp. 1221–
1228. doi: 10.1107/S090904950101425X (cit. on p. 19).

[WCC94] C Welnak, G J Chen, and F Cerrina. “SHADOW: A synchrotron radiation
and X-ray optics simulation tool”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 347.1-3 (1994), pp. 344–347 (cit. on p. 12).

77

https://doi.org/10.1107/S090904950101425X

Index

Bugs, 11

Concentric components, 42

Data files, 10
DFT, 49
Diffraction, 41, 42, 48

Environment variable
BROWSER, 11
MCXTAS, 72
MCXTRACE, 11, 65

Incoherent elastic scattering, 48

Keyword
%include, 65
EXTEND, 11, 18, 59, 66
GROUP, 66
MCDISPLAY, 66
OUTPUT PARAMETERS, 60
SHARE, 65

Library, 65
Components
data, 10, 72
misc, 62
monitors, 50
optics, 26
samples, 38
share, 65
sources, 18

mcxtrace-r, see Library/Run-time
read table-lib (Read Table), 10, 70
Run-time, 65
ABSORB, 65
ALLOW BACKPROP, 65
MC GETPAR, 60, 66
NAME CURRENT COMP, 66
POS A COMP, 66
POS A CURRENT COMP, 66
PROP DL, 65

PROP Z0, 65
RESTORE XRAY, 66
ROT A COMP, 66
ROT A CURRENT COMP, 66
SCATTER, 65
SCATTERED, 66
STORE XRAY, 66

run-time
PROP X0, 65
PROP Y0, 65

Shared, see Library/Components/share

Monitor
4pi, 52
photon counter, 51

Monitors, 50
Banana shape, 58
Custom monitoring (user variables,

Monitor nD), 58
Energy monitor, 51
Photon parameter correlations, Pre-

Monitor nD, 60
Position sensitive detector (PSD), 51
Position sensitive detector (PSD), co-

herent, 52
Position Sensitive Detector (PSD), En-

ergy Selective, 52
Position sensitive monitor recording

mean energy, 58
PowerPSD, 53
The All-in-One monitor (Monitor nD),

54
Wavelength monitor, 51

monitors
PreMonitor, 60

Monte Carlo method, 12
Accuracy, 17
Direction focusing, 15
Stratified sampling, 16

Multiple scattering, 48

Optics, 26, 30, 33

78

Beam stop, 27
Filter, 28
lens, 29–32
mirror, 33
Mirror plane, 34
multilayer, mirror, 34
Point in space (Arm, Optical bench, Co-

ordinate system), 26
Progress bar, 63
Slit, 26

Removed x-ray events, 66
Removed xray events, 10

Sample environments, 42
Samples, 38

Absorption, 40
Dilute colloid medium, 41
liquid, diffraction, 49
Powder, multiple diffraction line, 42
SAXS, 41
Single crystal diffraction, 48
single crystal, darwin, 47

Small angle scattering, 41
Sources, 18

Continuous source with specified diver-
gence, 21

Flat surface source, 20
Point source, 20
Shadow, 64
Source gaussian, 21
Virtual source, 64
Virtual source from stored neutron

events, 63
Virtual source, recording photon events,

63
X-ray tube laboratory source, 22

time resolved, 49
Tomography, 40
Tools

mcdoc, 11

79

	Preface and acknowledgements
	About the component library
	Authorship
	Symbols for x-ray scattering and simulation
	Component coordinate system
	About data files
	Component source code
	Documentation
	Disclaimer, bugs

	Monte Carlo Techniques and simulation strategy
	X-ray simulations
	Monte Carlo ray tracing simulations

	The x-ray weight
	Statistical errors of non-integer counts

	Weight factor transformations during a Monte Carlo choice
	Direction focusing

	Stratified sampling
	Accuracy of Monte Carlo simulations

	Source components
	Photon flux and Brilliance
	Source_pt: A mathematical point emitting photons with a spectrum either uniform, gaussian or generated from a datafile
	Source_flat: A flat surface emitting photons with a spectrum either uniform, gaussian or generated from a datafile
	Source_div: A continuous source with specified divergence
	Source_gaussian: the model has a gaussian distribution of intensity
	Source_lab: X-ray tube laboratory source
	Other sources components: virtual sources (event files)

	Beam optical components: Arms, slits, filters etc.
	Arm: The generic component
	Slit: A beam defining diaphragm
	Slit_N: multiple slits
	Beamstop: A photon absorbing area
	Filter: A general absorption filter model
	Example

	Chopper_simple: An ideal chopper

	Refractive optical components: lenses
	Lens_simple: Thin lens approximation
	Lens_parab: Thick parabolic CRL
	Lens_parab_Cyl: Thick 1D-parabolic CRL
	Lens_parab_rough: Thick parabolic CRL including roughness-model
	Lens_parab_Cyl_rough: Thick 1D-parabolic CRL including roughness-model
	Lens_Kinoform: refractice kinoform lens
	Lens_elliptical:

	Reflective optical components: mirrors
	Mirror_curved: Cylindrically curved mirror
	Mirror_parabolic: Mirror with a parabolic curvature profile.
	Mirror_elliptic: Mirror with a elliptic curvature profile.
	Multilayer_elliptic: Elliptically curved mirror coated with a multilayer
	Definition of the reference frames
	Algorithm

	Reflection of the ray in the mirror
	Mirror reflectivity

	TwinKB_ML: Side-by-side Kirkpatrick-Baez mirror pair

	Samples
	Scattering notation
	Weight transformation in samples; focusing
	Future development of sample components
	Absorption_sample: An absorption phantom
	Saxs_spheres: A model of dilute hard spheres in solution for SAXS-use
	PowderN: A general powder sample
	Files formats: powder structures
	Geometry, physical properties, concentricity
	Powder scattering
	Algorithm

	Perfect_crystal: A Darwin-width domniated single crystal model
	Single_crystal: The single crystal component
	Molecule_2state: Excitable time-dependent sample model

	Monitors and detectors
	Monitor: Simple intensity monitor
	E_monitor: The energy-sensitive monitor
	L_monitor: The wavelength sensitive monitor
	PSD_monitor: The PSD monitor
	PSD_monitor_coh: The coherent PSD monitor
	PSD_monitor_4PI: A 4 PI steradian spherical monitor.
	EPSD_monitor: Energy-selective PSD monitor
	W_psd_monitor: A power vs. position monitor
	Monitor_nD: A general Monitor for 0D/1D/2D records
	The Monitor_nD geometry
	The photon parameters that can be monitored
	Important options
	The output files
	Monitor equivalences
	Usage examples
	Monitoring user variables

	PreMonitor_nD: Store photon rays for possible later detection.

	Special-purpose components
	Progress_bar: Dynamic information output
	Virtual_output: Saving the first part of a split simulation
	Virtual_input: Starting the second part of a split simulation
	Shadow_input: Reading input from Shadow
	Shadow_output: Saving the photon rays for use with SHADOW

	Libraries and conversion constants
	Run-time calls and functions (mcxtrace-r)
	Photon propagation
	Coordinate and component variable retrieval
	Coordinate transformations
	Mathematical routines
	Output from detectors
	Ray-geometry intersections
	Random numbers

	Reading a data file into a vector/matrix (Table input, read_table-lib)
	Constants for unit conversion etc.

	The McXtrace terminology
	Bibliography
	Index and keywords

