McXtrace logo

McXtrace - An X-ray ray-trace simulation package

Synchrotron SOLEIL Niels Bohr Institute DTU Physics

McXtrace

About McXtrace
 Publications
 Project Partners
 Project People
 Goal

Download
 Components

Documentation
 Wiki (GitHub)
 Commands
 Manual
 Tutorial

Mailing list

Links

Code-repository (GitHub)

Search


McXtrace: Mirror_parabolic

[ Identification | Description | Input parameters | Output parameters | Links ]

The Mirror_parabolic Component

Idealized parabolic mirror

Identification

  • Site:
  • Author: Erik Knudsen
  • Origin: Risoe
  • Date: Feb 11, 2010

Description

Takes a reflectivity (default=1) as input and reflects rays in a ideal geometry
parabolic mirror. The mirror is positioned in the zx-plane curving towards positive y.
I.e. the focal point is (0,0,f(a,b))
The geometry of the paraboloid is governed by the equation: y = x^2 / a^2 + z^2 / b^2
Hence, the focal length for the 'x' curve is f=a^2 / 4, and analogous for z.

Input parameters

Parameters in boldface are required; the others are optional.
NameUnitDescriptionDefault
R1Reflectivity of mirror.1
asqrt(m)Transverse curvature scale, if zero - the mirror is flat along x.1
bsqrt(m)Longitudinal curvature scale, if zero, flat along z.1
xwidthmWidth of mirror.0.1
zdepthmLength of mirror.0.1
yheightmThickness of mirror. If 0 (the default) the mirror is mathemticlly thin. Only has an effect for hitting the mirror from the side.0

Output parameters

Parameters in boldface are required; the others are optional.
NameUnitDescriptionDefault
a2invm^-2Inverse of a^2.
b2invm^-2Inverse of b^2.
xmaxmMirrors' extent along x.
zmaxmMirrors' extent along z.
focusxmFocal length wrt x = f(a).
focuszmFocal length wrt z = f(b).

Links


[ Identification | Description | Input parameters | Output parameters | Links ]

Generated on 2022-01-12 12:31:08


Last Modified: Wednesday, 12-Jan-2022 12:31:08 CET
Search website mailinglist archive GitHub repos